32 research outputs found

    Vibronic recovering of functionality of quantum cellular automata based on bidimeric square cells with violated condition of strong Coulomb repulsion

    Get PDF
    Strong Coulomb repulsion between the two charges in a square planar mixed-valence cell in quantum cellular automata (QCA) allows us to encode the binary information in the two energetically beneficial diagonal distributions of the electronic density. In this article, we pose a question: to what extent is this condition obligatory for the design of the molecular cell? To answer this question, we examine the ability to use a square-planar cell composed of one-electron mixed valence dimers to function in QCA in a general case when the intracell Coulomb interaction U is not supposed to be extremely strong, which means that it is comparable with the characteristic electron transfer energy (violated strong U limit). Using the two-mode vibronic model treated within the semiclassical (adiabatic) and quantum-mechanical approaches, we demonstrate that strong vibronic coupling is able to create a considerable barrier between the two diagonal-type charge configurations, thus ensuring bistability and polarizability of the cells even if the Coulomb barrier is not sufficient. The cases of weak and moderate Coulomb repulsion and strong vibronic coupling are exemplified by consideration of the cation radicals of the two polycyclic derivatives of norbornadiene [C12H12]+ and [C17H16]+ with the terminal C=C chromophores playing the role of redox sites. By using the detailed ab initio data, we reveal the main characteristics of the bi-dimeric cells composed of these molecules and illustrate the pronounced effect of the vibronic recovery clearly manifesting itself in the shape of the cell-cell response function. Revealing such 'vibronic recovery' of strong localization when the strong U limit is violated suggests a way to a significant expansion of the class of molecular systems suitable as QCA cells

    The use of machine learning methods in the diagnosis of diseases of crops

    No full text
    The approach to solving the problems of diagnosis and prognosis of diseases of agricultural crops using machine learning methods is described. To solve the problem of forecasting diseases of agricultural crops, it is proposed to use a genetic algorithm in the work. The analysis of the effectiveness of the proposed method is carried out depending on the convergence rate of such parameters as the mutation coefficient and population size. To solve the problem of diagnostics of agricultural crops, it is proposed to use a recurrent type of neural network. A software modelling complex has been developed that allows solving the problems of plant diseases diagnostics and making forecasts. The results obtained can reduce the costs of agricultural enterprises by reducing the cost of diagnosing agricultural diseases

    The powder X-band electron paramagnetic resonance spectroscopy of septet pyridyl-2,4,6-trinitrene

    No full text
    The first X-band EPR spectrum containing only non-overlapping signals of septet pyridyl-2,4,6-trinitrene and triplet pyridylnitrenes is reported. This spectrum was recorded after photolysis of 2,4,6-triazidopyridine in solid argon at 5 K. The zero-field splitting (ZFS) parameters of this trinitrene as well as of intermediate triplet mononitrenes and quintet dinitrenes formed at early stages of the photolysis were determined using the combination of modern computer line-shape spectral simulations and density functional theory (DFT) calculations. It was found that septet pyridyl-2,4,6-trinitrene has the record negative parameter D-S = -0.1031 cm(-1) among all known to date septet pyridyl-2,4,6-trinitrenes and may be of interest as a model multi-qubit spin system for investigations of quantum computation processing

    Mathematical Modeling, Analysis and Evaluation of the Complexity of Flight Paths of Groups of Unmanned Aerial Vehicles in Aviation and Transport Systems

    No full text
    Recently, we have seen the rapidly growing popularity of unmanned aerial vehicles. This is due to some advantages, namely portability, the ability to fly over hard-to-reach areas without human intervention. They are also widely used for commercial purposes, agriculture, delivery, automation in warehouses. The potential of unmanned aerial vehicles is vast and demonstrates promising opportunities. However, when using these devices, the issue of safety is acute. This article presents a developed software application that is used to improve the efficiency of flight research of groups of unmanned aerial vehicles, based on a new method for assessing flight safety by comparing the complexity of specified air routes. A practical approach to modeling and evaluating the search for a safe way is proposed. A suitable method of research is computer and simulation modeling. It is suggested to use the spectrum of dynamic characteristics of the sequence as a formal attribute for analyzing routes. The method is illustrated by an example of comparing air trajectories according to the flight safety criterion. The software application is intended for use in the educational process when training specialists in transport security, robotics, and system analysis

    Mathematical Modeling of Layered Nanocomposite of Fractal Structure

    No full text
    A model of a layered hierarchically constructed composite is presented, the structure of which demonstrates the properties of similarity at different scales. For the proposed model of the composite, fractal analysis was carried out, including an assessment of the permissible range of scales, calculation of fractal capacity, Hausdorff and Minkovsky dimensions, calculation of the Hurst exponent. The maximum and minimum sizes at which fractal properties are observed are investigated, and a quantitative assessment of the complexity of the proposed model is carried out. A software package is developed that allows calculating the fractal characteristics of hierarchically constructed composite media. A qualitative analysis of the calculated fractal characteristics is carried out

    Analysis of the Forecast Price as a Factor of Sustainable Development of Agriculture

    No full text
    Analysis of the rise in prices for consumer goods is a state’s priority task. The state assumes the obligation to regulate pricing in all spheres of consumption. First of all, the prices for essential commodities to which agricultural products belong are analyzed. The article shows the changes in prices for consumer goods of agricultural products (sugar) during a pandemic. The analysis of forecasting prices for sugar and its impact on the development of its production is carried out. The construction of the forecast model was based on extrapolation. The structure of a forecast model for price changes was based on the analysis of the time series of the Autoregressive Integrated Moving Average (ARIMA) class. This model consists of an autoregressive model and a moving average model. A forecast of the volume of domestic sugar transportation by rail has been completed. The algorithms implemented this model for searching for initial approximations and optimal parameters for the predictive model. The Hirotsugu Akaike Information Criterion (AIC) was used to select the best model. The algorithms were implemented in the Python programming language. The quality check of the description was performed with a predictive model of actual data. An economic interpretation of the rise in sugar prices and proof of the forecast’s truth obtained from a financial point of view were carried out

    Features of Thermomechanical Stability of Anionic–Cation Exchange Matrix “Polikon AC” on Viscose Non-Woven Materials

    No full text
    The thermomechanical stability of the anion–cation exchange matrix “Polikon AC” on viscose nonwoven materials is investigated. In this work, a molecular model of a solvation environment for experimentally obtained “Polikon AC” mosaic membranes is refined. Mosaic membranes on a viscose fiber base were fabricated by the method of polycondensation filling. The temperature dependence of deformation was investigated for dry and wet anion and cation exchange membrane components at a constant tensile load of 1.5 N and a heating rate of 8 °C/min. The effect of moisture content on the deformation of anionite and cationite fragments under a constant external tensile load of 1.5 and 3 N in a temperature range up to 100 °C was studied

    Mathematical Modeling of Dielectric Permeability and Volt-Ampere Characteristics of a Semiconductor Nanocomposite Conglomerate

    No full text
    Mathematical computer models of the permittivity of silicon-based nanostructures upon interaction with electromagnetic radiation in a wide frequency range have been developed. To implement computer models for studying the electrophysical properties of the structures under study, algorithms and a set of programs have been developed. The results of the study of materials will not only provide fundamental information about the physical effects occurring in composite nanostructures but will also be useful for solving problems related to calculations for given electrophysical problems. For a nanocomposite based on ceramics and semiconductor oxides of zinc grains, resonant bursts of permittivity are observed within a wavelength of 300–400 nm; it has been found that this is due to the presence of electronic polarization of the nanocomposite core. The paper presents the results of modeling the current-voltage characteristics of a nanocomposite based on ceramics and semiconductor grains of zinc oxide. The obtained results show that the geometrical parameters, such as the number of layers and sample width, affect the CVC of the nanocomposite, and the operating point of the CVC shifts. This may be of interest in the development of materials with desired electrical characteristics for the creation of varistors

    Insight Into The Spin-Vibronic Problem of a Mixed Valence Magnetic Molecular Cell for Quantum Cellular Automata

    No full text
    The effects of the vibronic coupling in quantum cellular automata (QCA) based on the square planar mixed valence (MV) molecular cells comprising four paramagnetic centers (spin cores) and two excess mobile electrons are analyzed in the important particular case when the Coulomb energy gap between the ground antipodal diagonal-type two-electron configurations and the excited side-type configurations considerably exceeds both the one-electron transfer parameter (strong U-limit) and the vibronic stabilization energy. Under such conditions the developed model involves the second-order double exchange, the Heisenberg-Dirac-Van Vleck (HDVV) exchange and the vibronic coupling of the excess electrons with the molecular B-1g-vibration composed of four full-symmetric local vibrations. The latter interaction is shown to significant amplify the ability of the electric field produced by the driver-cell to polarize the excess electrons in the working cell, which can be termed 'the effect of the vibronic enhancement of the cell-cell interaction'. This effect leads to a redetermination of the conditions for switching between different spin-states, as well as to a significant change in the shapes of the cell-cell response functions. The obtained results demonstrate the importance of the vibronic coupling in all aspects (such as description of a free cell and cell-cell response) of the theory of molecular QCA based on MV clusters

    Structural relaxation features of spark plasma sintered Ni3Al samples

    No full text
    A study of the features of relaxation processes activation in Ni3Al samples obtained by ball milling and subsequent spark plasma sintering (SPS) was carried out. The effect of the duration of the preliminary high-energy ball milling (HEBM) on the activation of structural relaxation processes at temperatures above and below the SPS temperature was revealed. It was found that at temperatures above the synthesis temperature, the main relaxation processes are associated with the activation of primary recrystallization in the most defective regions, that consist of grains of submicron sizes. It was shown that the temperature of activation of high-defect states relaxation in SPS samples of Ni3Al decreases with an increase in the duration of the preliminary HEBM
    corecore