8 research outputs found

    Weak mutually unbiased bases

    Full text link
    Quantum systems with variables in Z(d){\mathbb Z}(d) are considered. The properties of lines in the Z(d)×Z(d){\mathbb Z}(d)\times {\mathbb Z}(d) phase space of these systems, are studied. Weak mutually unbiased bases in these systems are defined as bases for which the overlap of any two vectors in two different bases, is equal to d−1/2d^{-1/2} or alternatively to one of the di−1/2,0d_i^{-1/2},0 (where did_i is a divisor of dd apart from d,1d,1). They are designed for the geometry of the Z(d)×Z(d){\mathbb Z}(d)\times {\mathbb Z}(d) phase space, in the sense that there is a duality between the weak mutually unbiased bases and the maximal lines through the origin. In the special case of prime dd, there are no divisors of dd apart from 1,d1,d and the weak mutually unbiased bases are mutually unbiased bases

    Partial ordering of weak mutually unbiased bases

    Get PDF
    YesA quantum system (n) with variables in Z(n), where n = Qpi (with pi prime numbers), is considered. The non-near-linear geometry G(n) of the phase space Z(n) × Z(n), is studied. The lines through the origin are factorized in terms of ‘prime factor lines’ in Z(pi)×Z(pi). Weak mutually unbiased bases (WMUB) which are products of the mutually unbiased bases in the ‘prime factor Hilbert spaces’ H(pi), are also considered. The factorization of both lines and WMUB is analogous to the factorization of integers in terms of prime numbers. The duality between lines and WMUB is discussed. It is shown that there is a partial order in the set of subgeometries of G(n), isomorphic to the partial order in the set of subsystems of (n)
    corecore