214 research outputs found

    Backscattering and secondary-electron emission from metal targets of various thicknesses

    Get PDF
    Backscattering and secondary electron emission from metal targets of various thicknesse

    Empirical equations for electron backscattering coefficients

    Get PDF
    Empirical equations for electron backscattering coefficient

    Geometrical Dependence on the Onset of Surface Plasmon Polaritons in THz Grid Metasurfaces

    Get PDF
    Abstract The transmission response of metallo-dielectric grid metasurfaces is experimentally investigated through Terahertz Time Domain Spectroscopy and the corresponding effective dielectric function is retrieved. Using a lumped element model we can determine the dependence of the effective plasma frequency (the transition frequency) on the metasurface filling factor F. The change of the transition frequency vs. F spans over one order of magnitude and sets the threshold between the metamaterial (homogeneous) and the photonic crystal (diffraction-like) regime, ruling the onset of two different Surface Plasmon Polaritons, spoof and high order. Field symmetry and spatial extension of such excitations are investigated for the possible applications of THz grid metasurfaces in bio- and chemical sensing and sub-wavelength imaging

    Encoded-enhancement of THZ metasurface figure of merit for label-free sensing

    Get PDF
    We describe an experimental strategy for the use of Terahertz (THz) metasurfaces as a platform for label-free wide range detection of the dielectric function in biological fluids. Specifically, we propose a metagrid (MG), opportunely infiltrated with a fluid and then capped, as the reference structure for sensing experiments with a high reproducibility character. By combining experiments and full-wave simulations of the transmission T of such a structure, we introduce a reliable set up where the volume of the involved analyte in each unit cell is precisely determined. The unavoidable decrease in the quality factor of the intrinsic resonances due to the lossy fluid and cap layer is circumvented using an appropriate transformation of T that amplifies the change in the MG intrinsic resonances, improving in such a way the sensor sensitivity to values close to the experimental limits. The transformed signal features delta-like peaks enabling an easy readout of frequency positions at resonances

    LEUKOCYTE SPECIFIC PROTEIN-1: A NOVEL REGULATOR OF HEPATOCELLULAR MIGRATION AND PROLIFERATION IN LIVER REGENERATION AND CANCER

    Get PDF
    Hepatocellular carcinoma (HCC) is the most commonly diagnosed form of liver cancer with high morbidity and mortality. Copy number variation analysis (CNV) of human HCC revealed that over 50% of the HCC samples examined had CNV in the gene leukocyte specific protein-1 (LSP1). LSP1, a F-actin binding protein, is expressed in hematopoietic cells and interacts with Kinase Suppressor of Ras (KSR), a scaffold for the ERK/MAPK pathway. The expression of LSP1 in liver and its role in normal hepatocellular function and carcinogenesis remains unknown. Therefore, LSP1 mRNA and protein levels were analyzed in normal hepatocytes in culture, rat liver following partial hepatectomy (PHx), and hepatoma cell lines. In culture and after PHx, LSP1 increased after the termination of hepatocyte proliferation and migration. To investigate LSP1 function in HCC, shRNA was utilized to stably knock down LSP1 expression in the JM1 rat hepatoma cell line. Loss of LSP1 in JM1 cells resulted in dramatic upregulation of cyclin D1 and pERK2, as well as increased cell proliferation and migration. Co-immunoprecipitation and immunofluorescence analysis displayed an interaction and co-localization between LSP1, KSR and F-actin in the JM1 cells and liver during regeneration. Conversely, expression of LSP1 in JM2 rat hepatoma cell line led to decreased proliferation. Enhanced expression of LSP1 in mouse hepatocytes during liver regeneration following injection of an LSP1 expression plasmid also led to decreased hepatocyte proliferation, cyclin D1 and pERK expression. LSP1 knockout mice subjected to PHx displayed increased hepatocellular proliferation on day 4 when compared to control livers as well as increased pERK expression, whereas LSP1 overexpressing transgenic mice (TG) livers displayed a decrease in Ki67 positive hepatocytes on day 4 following PHx and decreased pERK expression. Hepatocytes from KO mice displayed increased proliferation in the absence of growth factors in culture whereas TG hepatocytes proliferated significantly less than WT control hepatocytes. Conclusion: LSP1 is expressed in normal hepatocytes and liver following PHx after the termination of proliferation. In rat hepatoma cell lines and mouse liver in vivo, LSP1 functions as a negative regulator of proliferation and migration. Given the high frequency of LSP1 CNV in human HCC, LSP1 may be a novel target for diagnosis and treatment of HCC

    Quantitative I-131 SPECT Reconstruction using CT Side Information from Hybrid Imaging

    Full text link
    A penalized-likelihood (PL) SPECT reconstruction method using a modified regularizer that accounts for anatomical boundary side information was implemented to achieve accurate estimates of both the total target activity and the activity distribution within targets. In both simulations and experimental I-131 phantom studies, reconstructions from 1) penalized likelihood employing CT-side information based regularization (PL-CT); 2) penalized likelihood with edge preserving regularization (no CT); 3) penalized likelihood with conventional spatially invariant quadratic regularization (no CT) were compared with 4) Ordered Subset Expectation Maximization (OSEM), which is the iterative algorithm conventionally used in clinics for quantitative SPECT. Evaluations included phantom studies with perfect and imperfect (misregistered) side information and studies with uniform and non-uniform activity distributions in the target. For targets with uniform activity, the PL-CT images and profiles were closest to the `truth', avoided the edge offshoots evident with OSEM and minimized the blurring across boundaries evident with regularization without CT information. Apart from visual comparison, reconstruction accuracy was evaluated using the bias and standard deviation (STD) of the total target activity estimate and the root mean square error (RMSE) of the activity distribution within the target. PL-CT reconstruction reduced both bias and RMSE compared with regularization without side information. When compared with unregularized OSEM, PL-CT reduced RMSE and STD while bias was comparable. For targets with non-uniform activity, these improvements with PL-CT were observed only when the change in activity was matched by a change in the anatomical image and the corresponding inner boundary was also used to control the regularization. In summary, the present work demonstrates the potential of using CT side information to obtain improved estimates of the activity distribution in targets wi- - thout sacrificing the accuracy of total target activity estimation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85862/1/Fessler243.pd

    Determining Total I-131 Activity Within a VoI Using SPECT, a UHE Collimator, OSEM, and a Constant Conversion Factor

    Full text link
    Accurate determination of activity within a volume of interest is needed during radiopharmaceutical therapies. Single-photon emission computed tomography(SPECT) is employed but requires a method to convert counts to activity. We use a phantom-based conversion; that is, we image an elliptical cylinder containing a sphere that has a known amount of 131-I activity inside. The regularized space alternating generalized expectation (SAGE) algorithm employing a strip-integral detector-response model was employed for reconstruction in previous patient evaluations. With that algorithm and a high-energy collimator, the estimates for sphere activity varied with changes in: 1) the level of uniform background activity in the cylinder; 2) the image resolution due to different values of the radius of rotation R; and 3) the volume of the sphere. When one used those to convert reconstructed counts within a patient tumor into an activity estimate, the resultant value may have been in error because of patient-phantom mismatch. As a potential remedy, in this paper, we use an ordered subsets expectation maximization (OSEM) algorithm with a 3-D depth-dependent detector-response model and an ultra-high-energy collimator. Results after 100 OSEM iterations and using a maximum counts registration show the estimates for sphere activity: 1) have a dependence on the level of background activity with a slope whose absolute magnitude is typically only 0.37 times that with SAGE; 2) are independent of R; and 3) are independent of sphere volume down to and including a sphere volume of 20 cm3. We conclude that using a global-average conversion factor to relate counts to activity and no volume-based correction might be reasonable with OSEM. For a test of that conclusion, target activity is estimated for an anthropomorphic phantom containing a 100 cm3 spherical tumor centrally located inferior to the lungs. With OSEM-based quantification, using: 1) a global-average conversion factor and 2) no volume-based correction, mean bias in the simulated-tumor activity estimate over 20 realizations is -7.37% (relative standard deviation =5.93%). With SAGE-based quantification using: 1) the conversion factor corresponding to the experimental estimate of ba- ckground and 2) volume-based correction, the mean bias is -10.7% (relative standard deviation =2.37%). The mean bias is smaller in a statistically significant way and relative standard deviation is not more than a factor of 2.5 bigger with OSEM compared to SAGE. In addition, with OSEM, a patient image apparently shows more highly resolved features, and the activity estimates for two tumors are increased by an average of 10%, relative to results with SAGE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85985/1/Fessler57.pd

    Update on HE vs UHE Collimation for Focal Total-activity Quantification in I-131 SPECT Using 3D OSEM

    Full text link
    We calibrated a scintillation camera for the counts-to-activity conversion factor, CF, by measuring a phantom consisting of a sphere containing a known 131-I activity placed within an elliptical cylinder. Within a 3D OSEM reconstruction algorithm, we employed a depth-dependent detector-response model based on smooth fits to the point-source-response function. Using the ultra-high-energy (UHE) collimator and 100 iterations, the recovery coefficient, RC, appeared to be 1 for any sphere volume down to 20 cm3. The CF changed only a small amount as the background-over-target activity concentration ratio, b, increased for both UHE and high-energy (HE) collimation. Tests of activity quantification were carried out with an anthropomorphic phantom simulating a 100 cm3 spherical tumor centrally located inferior to the lungs. With 3D OSEM reconstruction, using the global-average CF and no RC-based correction, mean bias in the simulated-tumor activity estimate over 20 realizations was -7.4% with UHE collimation, and -9.4% with HE collimation. For comparison, with 1D SAGE reconstruction, using the CF corresponding to the experimental estimate of b and RC-based correction, the mean bias was worse, -10.7% for UHE collimation, but better, -4.3 %, for HE collimation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85907/1/Fessler190.pd

    Effect of Including Detector Response in SPECT Quantification of Focal I-131 Therapy

    Full text link
    With a regularized strip-integral (1D) SAGE reconstruction, circular-orbit SPECT estimates of phantom focal 131-I activity vary with changes in the level of uniform background. They also vary with changes in image resolution due to different settings of the radius of rotation. To solve these problems, we investigated the effect of employing two different depth-dependent detector-response models. A regularized plane-by-plane (2D) SAGE algorithm reduced dependence of the counts-to-activity conversion factor on relative background concentration by 37% compared to the 1D SAGE. With unregularized multi-plane (3D) OSEM reconstruction, initial results showed: 1) a conversion factor that was independent of relative background concentration, and 2) a recovery coefficient that was approximately 1 for any sphere volume down to 20cc. We conclude that using a 3D detector-response model has the potential to eliminate bias problems. For a patient, the preliminary activity-estimate changes using 3D OSEM compared to 1D SAGE were: 1) +16% for a large tumor, and 2) -35% for a small tumor for which recovery-coefficient-based-correction-factor errors can be large.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85991/1/Fessler170.pd

    Regularized reconstruction in quantitative SPECT using CT side information from hybrid imaging

    Full text link
    A penalized-likelihood (PL) SPECT reconstruction method using a modified regularizer that accounts for anatomical boundary side information was implemented to achieve accurate estimates of both the total target activity and the activity distribution within targets. In both simulations and experimental I-131 phantom studies, reconstructions from (1) penalized likelihood employing CT-side information-based regularization (PL-CT), (2) penalized likelihood with edge preserving regularization (no CT) and (3) penalized likelihood with conventional spatially invariant quadratic regularization (no CT) were compared with (4) ordered subset expectation maximization (OSEM), which is the iterative algorithm conventionally used in clinics for quantitative SPECT. Evaluations included phantom studies with perfect and imperfect side information and studies with uniform and non-uniform activity distributions in the target. For targets with uniform activity, the PL-CT images and profiles were closest to the 'truth', avoided the edge offshoots evident with OSEM and minimized the blurring across boundaries evident with regularization without CT information. Apart from visual comparison, reconstruction accuracy was evaluated using the bias and standard deviation (STD) of the total target activity estimate and the root mean square error (RMSE) of the activity distribution within the target. PL-CT reconstruction reduced both bias and RMSE compared with regularization without side information. When compared with unregularized OSEM, PL-CT reduced RMSE and STD while bias was comparable. For targets with non-uniform activity, these improvements with PL-CT were observed only when the change in activity was matched by a change in the anatomical image and the corresponding inner boundary was also used to control the regularization. In summary, the present work demonstrates the potential of using CT side information to obtain improved estimates of the activity distribution in targets without sacrificing the accuracy of total target activity estimation. The method is best suited for data acquired on hybrid systems where SPECT-CT misregistration is minimized. To demonstrate clinical application, the PL reconstruction with CT-based regularization was applied to data from a patient who underwent SPECT/CT imaging for tumor dosimetry following I-131 radioimmunotherapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85409/1/pmb10_9_007.pd
    • …
    corecore