11 research outputs found

    Effectiveness of current anthelmintic treatment programs on reducing fecal egg counts in United States cow-calf operations

    Get PDF
    During the United States Department of Agriculture (USDA) National Animal Health Monitoring System’s (NAHMS) 2007–2008 beef study, producers from 24 states were offered the opportunity to evaluate their animals for internal parasites and for overall responses to treatment with anthelmintics. A lapse of 45 d was required between initial sampling and any previous treatments. Choice of anthelmintic (oral benzimidazoles, and both injectable and pour-on endectocides) was at the discretion of the producer so as not to alter the local control programs. Fresh fecal samples were collected from 20 animals, or from the entire group if less than 20, then randomly assigned to 1 of 3 participating laboratories for examination. Analyses consisted of double centrifugation flotation followed by enumeration of strongyle, Nematodirus, and Trichuris eggs (the presence of coccidian oocysts and tapeworm eggs was also noted). Where strongyle eggs per gram (epg) exceeded 30, aliquots from 2 to 6 animals were pooled for egg isolation and polymerase chain reaction (PCR) analysis for the presence of Ostertagia, Cooperia, Haemonchus, Oesophagostomum, and Trichostrongylus. Results from 72 producers (19 States) indicated that fecal egg count reductions were , 90% in 1/3 of the operations. All operations exhibiting less than a 90% reduction had used pour-on macrocyclic lactones as the anthelmintic treatment. While some of these less than expected reductions could have been the result of improper drug application, PCR analyses of the parasite populations surviving treatment, coupled with follow-up studies at a limited number of sites, indicated that less than expected reductions were most likely due to anthelmintic resistance in Cooperia spp. and possibly Haemonchus spp

    Prevalence of internal parasites in beef cows in the United States: Results of the National Animal Health Monitoring System’s (NAHMS) beef study, 2007–2008

    Get PDF
    During the United States Department of Agriculture (USDA) National Animal Health Monitoring System’s (NAHMS) 2007–2008 beef study, 567 producers from 24 US States were offered the opportunity to collect fecal samples from weaned beef calves and have them evaluated for the presence of parasite eggs (Phase 1). Participating producers were provided with instructions and materials for sample collection. Up to 20 fresh fecal samples were collected from each of the 99 participating operations. Fresh fecal samples were submitted to one of 3 randomly assigned laboratories for evaluation. Upon arrival at the laboratories, all samples were processed for the enumeration of strongyle, Nematodirus, and Trichuris eggs using the modified Wisconsin technique. The presence or absence of coccidian oocysts and tapeworm eggs was also noted. In submissions where the strongyle eggs per gram exceeded 30, aliquots from 2 to 6 animals were pooled for DNA extraction. Extracted DNA was subjected to genus level polymerase chain reaction (PCR) identification for the presence of Ostertagia, Cooperia, Haemonchus, Oesophagostomum, and Trichostrongylus. In this study, 85.6% of the samples had strongyle type, Nematodirus, and Trichuris eggs. Among the samples evaluated, 91% had Cooperia, 79% Ostertagia, 53% Haemonchus, 38% Oesophagostomum, 18% Nematodirus, 7% Trichuris, and 3% Trichostrongylus. The prevalence of coccidia and tapeworm eggs was 59.9% and 13.7%, respectively

    Management Factors Associated with Operation-Level Prevalence of Antibodies to Cache Valley Virus and Other Bunyamwera Serogroup Viruses in Sheep in the United States

    Get PDF
    A cross-sectional study was performed to identify operation-level risk factors associated with prevalence of antibody to Bunyamwera (BUN) serogroup viruses in sheep in the United States. Sera were obtained from 5150 sheep in 270 operations located in 22 states (three in the west, nine central states, and 10 in the east) and tested at a dilution of 1:20 by a plaque reduction neutralization test (PRNT) using Cache Valley virus (CVV). Antibodies that neutralized CVV were identified in 1455 (28%) sheep. Animal-level seroprevalence was higher in the east (49%) than the central (17%) and western (10%) states. A convenient subset (n = 509) of sera with antibodies that neutralized CVV was titrated and further analyzed by PRNT using all six BUN serogroup viruses that occur in the United States: CVV, Lokern virus (LOKV), Main Drain virus (MDV), Northway virus (NORV), Potosi virus (POTV), and Tensaw virus (TENV). Antibodies to CVV and LOKV were identified in sheep in all three geographic regions; MDV and POTV activity was detected in the central and eastern states, NORV activity was restricted to the west, and antibodies to TENV were not detected in any sheep. Several management factors were significantly associated with the presence of antibodies to BUN serogroup viruses. For instance, sheep housed during the lambing season inside structures that contained four walls and a roof and a door closed most of the time were more likely to be seropositive than other sheep. In contrast, herded/open-range sheep were less likely to be seropositive than their counterparts. These data can be used by producers to implement strategies to reduce the likelihood of BUN serogroup virus infection and improve the health and management practices of sheep

    Prevalence of internal parasites in beef cows in the United States: Results of the National Animal Health Monitoring System’s (NAHMS) beef study, 2007–2008

    Get PDF
    During the United States Department of Agriculture (USDA) National Animal Health Monitoring System’s (NAHMS) 2007–2008 beef study, 567 producers from 24 US States were offered the opportunity to collect fecal samples from weaned beef calves and have them evaluated for the presence of parasite eggs (Phase 1). Participating producers were provided with instructions and materials for sample collection. Up to 20 fresh fecal samples were collected from each of the 99 participating operations. Fresh fecal samples were submitted to one of 3 randomly assigned laboratories for evaluation. Upon arrival at the laboratories, all samples were processed for the enumeration of strongyle, Nematodirus, and Trichuris eggs using the modified Wisconsin technique. The presence or absence of coccidian oocysts and tapeworm eggs was also noted. In submissions where the strongyle eggs per gram exceeded 30, aliquots from 2 to 6 animals were pooled for DNA extraction. Extracted DNA was subjected to genus level polymerase chain reaction (PCR) identification for the presence of Ostertagia, Cooperia, Haemonchus, Oesophagostomum, and Trichostrongylus. In this study, 85.6% of the samples had strongyle type, Nematodirus, and Trichuris eggs. Among the samples evaluated, 91% had Cooperia, 79% Ostertagia, 53% Haemonchus, 38% Oesophagostomum, 18% Nematodirus, 7% Trichuris, and 3% Trichostrongylus. The prevalence of coccidia and tapeworm eggs was 59.9% and 13.7%, respectively

    Effectiveness of current anthelmintic treatment programs on reducing fecal egg counts in United States cow-calf operations

    Get PDF
    During the United States Department of Agriculture (USDA) National Animal Health Monitoring System’s (NAHMS) 2007–2008 beef study, producers from 24 states were offered the opportunity to evaluate their animals for internal parasites and for overall responses to treatment with anthelmintics. A lapse of 45 d was required between initial sampling and any previous treatments. Choice of anthelmintic (oral benzimidazoles, and both injectable and pour-on endectocides) was at the discretion of the producer so as not to alter the local control programs. Fresh fecal samples were collected from 20 animals, or from the entire group if less than 20, then randomly assigned to 1 of 3 participating laboratories for examination. Analyses consisted of double centrifugation flotation followed by enumeration of strongyle, Nematodirus, and Trichuris eggs (the presence of coccidian oocysts and tapeworm eggs was also noted). Where strongyle eggs per gram (epg) exceeded 30, aliquots from 2 to 6 animals were pooled for egg isolation and polymerase chain reaction (PCR) analysis for the presence of Ostertagia, Cooperia, Haemonchus, Oesophagostomum, and Trichostrongylus. Results from 72 producers (19 States) indicated that fecal egg count reductions were , 90% in 1/3 of the operations. All operations exhibiting less than a 90% reduction had used pour-on macrocyclic lactones as the anthelmintic treatment. While some of these less than expected reductions could have been the result of improper drug application, PCR analyses of the parasite populations surviving treatment, coupled with follow-up studies at a limited number of sites, indicated that less than expected reductions were most likely due to anthelmintic resistance in Cooperia spp. and possibly Haemonchus spp

    Factors Influencing Export Value Recovery after Highly Pathogenic Poultry Disease Outbreaks

    No full text
    Many factors influence a country’s international poultry market accessibility, including freedom from diseases such as highly pathogenic avian influenza and highly pathogenic strains of Newcastle disease. This study examines OIE-reported events of these two diseases over a 16-year period to determine the factors that contributed significantly to trade revenue recovery time. Results indicate that the elements influencing a measurable negative export revenue effect due to disease—including risk perceptions and whether the disease is zoonotic—differ from the elements that influence the length of revenue recovery, such as product affordability. In addition, overall global economic health and growing meat demand are elements that matter at the time an event occurs. The magnitude of elements influencing trade revenue during disease events suggests that recovery from HPAI and ND events may take months, not years

    Management Factors Associated with Operation-Level Prevalence of Antibodies to Cache Valley Virus and Other Bunyamwera Serogroup Viruses in Sheep in the United States

    No full text
    A cross-sectional study was performed to identify operation-level risk factors associated with prevalence of antibody to Bunyamwera (BUN) serogroup viruses in sheep in the United States. Sera were obtained from 5150 sheep in 270 operations located in 22 states (three in the west, nine central states, and 10 in the east) and tested at a dilution of 1:20 by a plaque reduction neutralization test (PRNT) using Cache Valley virus (CVV). Antibodies that neutralized CVV were identified in 1455 (28%) sheep. Animal-level seroprevalence was higher in the east (49%) than the central (17%) and western (10%) states. A convenient subset (n = 509) of sera with antibodies that neutralized CVV was titrated and further analyzed by PRNT using all six BUN serogroup viruses that occur in the United States: CVV, Lokern virus (LOKV), Main Drain virus (MDV), Northway virus (NORV), Potosi virus (POTV), and Tensaw virus (TENV). Antibodies to CVV and LOKV were identified in sheep in all three geographic regions; MDV and POTV activity was detected in the central and eastern states, NORV activity was restricted to the west, and antibodies to TENV were not detected in any sheep. Several management factors were significantly associated with the presence of antibodies to BUN serogroup viruses. For instance, sheep housed during the lambing season inside structures that contained four walls and a roof and a door closed most of the time were more likely to be seropositive than other sheep. In contrast, herded/open-range sheep were less likely to be seropositive than their counterparts. These data can be used by producers to implement strategies to reduce the likelihood of BUN serogroup virus infection and improve the health and management practices of sheep.This article is published as Meyers Matthew T., Bahnson Charlie S., Hanlon Michael, Kopral Christine, Srisinlapaudom Saengchan, Cochrane Zachary N., Sabas Carlene E., Saiyasombat Rungrat, Burrough Eric R., Plummer Paul J., O'Connor Annette M., Marshall Katherine L., and Blitvich Bradley J.. Vector-Borne and Zoonotic Diseases. November 2015, 15(11): 683-693. doi: 10.1089/vbz.2015.1810. Posted with permission.</p

    Management Factors Associated with Operation-Level Prevalence of Antibodies to Cache Valley Virus and Other Bunyamwera Serogroup Viruses in Sheep in the United States

    No full text
    A cross-sectional study was performed to identify operation-level risk factors associated with prevalence of antibody to Bunyamwera (BUN) serogroup viruses in sheep in the United States. Sera were obtained from 5150 sheep in 270 operations located in 22 states (three in the west, nine central states, and 10 in the east) and tested at a dilution of 1:20 by a plaque reduction neutralization test (PRNT) using Cache Valley virus (CVV). Antibodies that neutralized CVV were identified in 1455 (28%) sheep. Animal-level seroprevalence was higher in the east (49%) than the central (17%) and western (10%) states. A convenient subset (n = 509) of sera with antibodies that neutralized CVV was titrated and further analyzed by PRNT using all six BUN serogroup viruses that occur in the United States: CVV, Lokern virus (LOKV), Main Drain virus (MDV), Northway virus (NORV), Potosi virus (POTV), and Tensaw virus (TENV). Antibodies to CVV and LOKV were identified in sheep in all three geographic regions; MDV and POTV activity was detected in the central and eastern states, NORV activity was restricted to the west, and antibodies to TENV were not detected in any sheep. Several management factors were significantly associated with the presence of antibodies to BUN serogroup viruses. For instance, sheep housed during the lambing season inside structures that contained four walls and a roof and a door closed most of the time were more likely to be seropositive than other sheep. In contrast, herded/open-range sheep were less likely to be seropositive than their counterparts. These data can be used by producers to implement strategies to reduce the likelihood of BUN serogroup virus infection and improve the health and management practices of sheep.This article is published as Meyers, Matthew T., Charlie S. Bahnson, Michael Hanlon, Christine Kopral, Saengchan Srisinlapaudom, Zachary N. Cochrane, Carlene E. Sabas et al. "Management Factors Associated with Operation-Level Prevalence of Antibodies to Cache Valley Virus and Other Bunyamwera Serogroup Viruses in Sheep in the United States." Vector-Borne and Zoonotic Diseases 15, no. 11 (2015): 683-693. Doi: 10.1089/vbz.2015.1810. </p
    corecore