34 research outputs found

    Means of Introducing an Analyte into Liquid Sampling Atmospheric Pressure Glow Discharge

    Get PDF
    A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte)

    Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Get PDF
    Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram-negative bacterium with an additional internal membrane system that fulfills the energetic requirements of the cell

    Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unicellular cyanobacteria of the genus <it>Cyanothece </it>are recognized for their ability to execute nitrogen (N<sub>2</sub>)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how <it>Cyanothece </it>might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions.</p> <p>Results</p> <p>To expand upon the current knowledge of protein expression patterns in <it>Cyanothece </it>ATCC51142, we performed quantitative proteomic analysis using partial ("unsaturated") metabolic labeling and high mass accuracy LC-MS analysis. This dynamic proteomic profiling identified 721 actively synthesized proteins with significant temporal changes in expression throughout the light-dark cycles, of which 425 proteins matched with previously characterized cycling transcripts. The remaining 296 proteins contained a cluster of proteins uniquely involved in DNA replication and repair, protein degradation, tRNA synthesis and modification, transport and binding, and regulatory functions. Functional classification of labeled proteins suggested that proteins involved in respiration and glycogen metabolism showed increased expression in the dark cycle together with nitrogenase, suggesting that N<sub>2</sub>-fixation is mediated by higher respiration and glycogen metabolism. Results indicated that <it>Cyanothece </it>ATCC51142 might utilize alternative pathways for carbon (C) and nitrogen (N) acquisition, particularly, aspartic acid and glutamate as substrates of C and N, respectively. Utilization of phosphoketolase (PHK) pathway for the conversion of xylulose-5P to pyruvate and acetyl-P likely constitutes an alternative strategy to compensate higher ATP and NADPH demand.</p> <p>Conclusion</p> <p>This study provides a deeper systems level insight into how <it>Cyanothece </it>ATCC51142 modulates cellular functions to accommodate photosynthesis and N<sub>2</sub>-fixation within the single cell.</p

    Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2

    Get PDF
    Photosynthetic microbes are of emerging interest as production organisms in biotechnology because they can grow autotrophically using sunlight, an abundant energy source, and CO(2), a greenhouse gas. Important traits for such microbes are fast growth and amenability to genetic manipulation. Here we describe Synechococcus elongatus UTEX 2973, a unicellular cyanobacterium capable of rapid autotrophic growth, comparable to heterotrophic industrial hosts such as yeast. Synechococcus UTEX 2973 can be readily transformed for facile generation of desired knockout and knock-in mutations. Genome sequencing coupled with global proteomics studies revealed that Synechococcus UTEX 2973 is a close relative of the widely studied cyanobacterium Synechococcus elongatus PCC 7942, an organism that grows more than two times slower. A small number of nucleotide changes are the only significant differences between the genomes of these two cyanobacterial strains. Thus, our study has unraveled genetic determinants necessary for rapid growth of cyanobacterial strains of significant industrial potential

    Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Get PDF
    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms

    Hazardous chemicals from coal conversion processes?

    No full text

    Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Get PDF
    Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram-negative bacterium with an additional internal membrane system that fulfills the energetic requirements of the cell
    corecore