7,705 research outputs found

    Large-scale electric fields resulting from magnetic reconnection in the corona

    Get PDF
    The method of Forbes and Priest (2-D model) is applied to the large two-ribbon flare of July 29, 1973, for which both detailed H observations and magnetic data are available. For this flare the ribbons were long, nearly straight, and parallel to each other, and the 2-D model for the coronal field geometry may be adequate. The temporal profile E(t) is calculated and indicates that reconnection sets in at the beginning of the decay phase. From this time the electric field grows rapidly to a maximum value of about 2 V/cm within just a few minutes. Thereafter it decreases monotonically with time

    Magnetic field re-arrangement after prominence eruption

    Get PDF
    It has long been known that magnetic reconnection plays a fundamental role in a variety of solar events. Although mainly invoked in flare problems, large scale loops interconnecting active regions, evolving coronal hole boundaries, the solar magnetic cycle itself, provide different evidence of phenomena which involve magnetic reconnection. A further example might be given by the magnetic field rearrangement which occurs after the eruption of a prominence. Since most often a prominence reforms after its disappearance and may be observed at about the same position it occupied before erupting, the magnetic field has to undergo a temporary disruption of relax back, via reconnection, to a configuration similar to the previous one. The above sequence of events is best observable in the case of two ribbon (2-R) flares but most probably is associated with all filament eruptions. Even if the explanation of the magnetic field rearrangement after 2-R flares in terms of reconnection is generally accepted, the lack of a 3-dimensional model capable of describing the field reconfiguration, has prevented, up to now, a thorough analysis of its topology as traced by H alpha/x ray loops. A numerical technique is presented which enables oneto predict and visualize the reconnected configuration, at any time, and therefore allows one to make a significant comparison of observations and model predictions throughout the whole process

    Effect of Vinyl and Silicon Monomers on Mechanical and Degradation Properties of Bio-Degradable Jute-Biopol® Composite

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Composites of jute fabrics (Hessian cloth) and Biopol® were prepared by compression molding process. Three types of Biopol® (3-hydroxbutyrate-co-3-hydroxyvalarate) such as D300G, D400G and D600G, depending on the concentration of 3-hydroxyvalarate (3HV) in 3-hydroxbutyrate (3HB) were taken for this purpose. Mechanical properties such as tensile strength (TS), bending strength (BS), elongation at break (Eb) and impact strength (IS) of the jute-Biopol® composites were studied. It was found that the composite with D400G produced higher mechanical properties in comparison to the other two types of Biopol®. To increase mechanical properties as well as interfacial adhesion between fiber and matrix, 2-ethyl hydroxy acrylate (EHA), vinyl tri-methoxy silane (VMS) and 3-methacryloxypropyl tri-methoxy silane (MPS) were taken as coupling agents. Enhanced mechanical properties of the composites were obtained by using these coupling agents. Biopol® D400G composites showed the highest mechanical properties. Among the coupling agents EHA depicts the highest increase of mechanical properties such as tensile strength (80%), bending strength (81%), elongation at break (33%) and impact strength (130%) compared pure Biopol. SEM investigations demonstrate that the coupling agents improve the interfacial adhesion between fiber and matrix. The surface of the silanized jute was characterized by FTIR and found the deposition of silane on jute fiber was observed. Soil degradation test proved that the composite prepared with EHA treated jute exhibits better degradation properties in comparison to pure Biopol®

    Are there sterile neutrinos at the eV scale?

    Full text link
    New predictions for the anti-neutrino flux emitted by nuclear reactors suggest that reactor experiments may have measured a deficit in the anti-neutrino flux, which can be interpreted in terms of oscillations between the known active neutrinos and new sterile states. Motivated by this observation, we perform a re-analysis of global short-baseline neutrino oscillation data in a framework with one or two sterile neutrinos. While one sterile neutrino is still not sufficient to reconcile the signals suggested by reactor experiments and by the LSND and MiniBooNE experiments with null results from other searches, we find that, with the new reactor flux prediction, the global fit improves considerably when the existence of two sterile neutrinos is assumed.Comment: 5 pages, 5 figures, v2: reference and acknowledgements adde

    Intercomparison of numerical models of flaring coronal loops

    Get PDF
    The proposed Benchmark Problem consists of an infinitesimal magnetic flux tube containing a low-beta plasma. The field strength is assumed to be so large that the plasma can move only along the flux tube, whose shape remains invariant with time (i.e., the fluid motion is essentially one-dimensional). The flux tube cross section is taken to be constant over its entire length. In planar view the flux tube has a semi-circular shape, symmetric about its midpoint s = s sub max and intersecting the chromosphere-corona interface (CCI) perpendicularly at each foot point. The arc length from the loop apex to the CCI is 10,000 km. The flux tube extends an additional 2000 km below the CCI to include the chromosphere, which initially has a uniform temperature of 8000 K. The temperature at the top of the loop was fixed initially at 2 X 1 million K. The plasma is assumed to be a perfect gas (gamma = 5/3), consisting of pure hydrogen which is considered to be fully ionized at all temperatures. For simplicity, moreover, the electron and ion temperatures are taken to be everywhere equal at all times (corresponding to an artificially enhanced electron-ion collisional coupling). While there was more-or-less unanimous agreement as to certain global properties of the system behavior (peak temperature reached, thermal-wave time scales, etc.), no two groups could claim satisfactory accord when a more detailed comparison of solutions was attempted

    Magnetism and superconductivity at LAO/STO-interfaces: the role of Ti 3d interface electrons

    Full text link
    Ferromagnetism and superconductivity are in most cases adverse. However, recent experiments reveal that they coexist at interfaces of LaAlO3 and SrTiO3. We analyze the magnetic state within density functional theory and provide evidence that magnetism is not an intrinsic property of the two-dimensional electron liquid at the interface. We demonstrate that the robust ferromagnetic state is induced by the oxygen vacancies in SrTiO3- or in the LaAlO3-layer. This allows for the notion that areas with increased density of oxygen vacancies produce ferromagnetic puddles and account for the previous observation of a superparamagnetic behavior in the superconducting state.Comment: 5 pages, 4 figures, to appear in Physical Review B (Rapid Communications

    Interface hole-doping in cuprate-titanate superlattices

    Full text link
    The electronic structure of interfaces between YBa2_2Cu3_3O6_6 and SrTiO3_3 is studied using local spin density approximation (LSDA) with intra-atomic Coulomb repulsion (LSDA+U). We find a metallic state in cuprate/titanate heterostructures with the hole carriers concentrated substantially in the CuO2_2-layers and in the first interface TiO2_2 and SrO planes. This effective interface doping appears due to the polarity of interfaces, caused by the first incomplete copper oxide unit cell. Interface-induced high pre-doping of CuO2_2-layers is a key mechanism controlling the superconducting properties in engineered field-effect devices realized on the basis of cuprate/titanate superlattices.Comment: 5 pages, 5 figure

    On the estimation of time dependent lift of a European Starling during flapping

    Get PDF
    We study the role of unsteady lift in the context of flapping wings in birds' flight. Both aerodynamicists and biologists attempt to address this subject, yet it seems that the contribution of the unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through unsteady thin airfoil theory and lift calculation using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both are presented over wingbeat cycles. Using long sampling data, several wingbeat cycles have been analyzed in order to cover the downstroke and upstroke phases. It appears that the lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion

    Beam-Based Alignment of the NuMI Target Station Components at FNAL

    Get PDF
    The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.Comment: higher resolution figures available on Fermilab Preprint Server (see SPIRES entry), accepted for publication in Nucl. Instr. and Meth.

    Impact of DM direct searches and the LHC analyses on branon phenomenology

    Get PDF
    Dark Matter direct detection experiments are able to exclude interesting parameter space regions of particle models which predict an important amount of thermal relics. We use recent data to constrain the branon model and to compute the region that is favored by CDMS measurements. Within this work, we also update present colliders constraints with new studies coming from the LHC. Despite the present low luminosity, it is remarkable that for heavy branons, CMS and ATLAS measurements are already more constraining than previous analyses performed with TEVATRON and LEP data.Comment: 17 pages, 2 figure
    • …
    corecore