7,398 research outputs found

    The NuMI Beam At FNAL And Its Use For Neutrino Cross Section Measurements

    Get PDF
    The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense v, beam of variable energy (2-20 GeV). Several aspects of the design and results from runs of the MINOS experiment are reviewed. I also discuss technique to measure directly the neutrino flux using a muon flux system at the end of the NuMI line.Physic

    Long Baseline Neutrino Physics in the U.S

    Get PDF
    Long baseline neutrino oscillation physics in the U.S. is centered at the Fermi National Accelerator Laboratory (FNAL), in particular at the Neutrinos at the Main Injector (NuMI) beamline commissioned in 2004-2005. Already, the MINOS experiment has published its first results confirming the disappearance of νμ\nu_\mu's across a 735 km baseline. The forthcoming NOν\nuA experiment will search for the transition νμ→νe\nu_\mu\to\nu_e and use this transition to understand the mass heirarchy of neutrinos. These, as well as other conceptual ideas for future experiments using the NuMI beam, will be discussed. The turn-on of the NuMI facility has been positive, with over 310 kW beam power achieved. Plans for increasing the beam intensity once the Main Injector accelerator is fully-dedicated to the neutrino program will be presented

    Entropic gravity, minimum temperature, and modified Newtonian dynamics

    Full text link
    Verlinde's heuristic argument for the interpretation of the standard Newtonian gravitational force as an entropic force is generalized by the introduction of a minimum temperature (or maximum wave length) for the microscopic degrees of freedom on the holographic screen. With the simplest possible setup, the resulting gravitational acceleration felt by a test mass m from a point mass M at a distance R is found to be of the form of the modified Newtonian dynamics (MOND) as suggested by Milgrom. The corresponding MOND-type acceleration constant is proportional to the minimum temperature, which can be interpreted as the Unruh temperature of an emerging de-Sitter space. This provides a possible explanation of the connection between local MOND-type two-body systems and cosmology.Comment: 12 pages, v6: published versio

    Entanglement crossover close to a quantum critical point

    Full text link
    We discuss the thermal entanglement close to a quantum phase transition by analyzing the concurrence for one dimensional models in the quantum Ising universality class. We demonstrate that the entanglement sensitivity to thermal and to quantum fluctuations obeys universal T≠0T\neq 0--scaling behaviour. We show that the entanglement, together with its criticality, exhibits a peculiar universal crossover behaviour.Comment: 12 pages; 5 figures (eps). References added; to be published in Europhysics Letter

    The CLEO-III Ring Imaging Cherenkov Detector

    Get PDF
    The CLEO-III Detector upgrade for charged particle identification is discussed. The RICH design uses solid LiF crystal radiators coupled with multi-wire chamber photon detectors, using TEA as the photosensor, and low-noise Viking readout electronics. Results from our beam test at Fermilab are presented.Comment: Invited talk by R.J. Mountain at ``The 3rd International Workshop on Ring Imaging Cherenkov Detectors," a research workshop of the Israel Science Foundation, Ein-Gedi, Dead-Sea, Israel, Nov. 15-20, 1998, 14 pages, 9 figure

    Twist Defect in Chiral Photonic Structures

    Get PDF
    We demonstrate that twisting one part of a chiral photonic structure about its helical axis produces a single circularly polarized localized mode that gives rise to an anomalous crossover in propagation. Up to a crossover thickness, this defect results in a peak in transmission and exponential scaling of the linewidth for a circularly polarized wave with the same handedness as structure. Above the crossover, however, the linewidth saturates and the defect mode can be excited only by the oppositely polarized wave, resulting in a peak in reflection instead of transmission.Comment: 12 page

    A diagrammatic treatment of neutrino oscillations

    Full text link
    We present a covariant wave-packet approach to neutrino flavor transitions in vacuum. The approach is based on the technique of macroscopic Feynman diagrams describing the lepton number violating processes of production and absorption of virtual massive neutrinos at the macroscopically separated space-time regions ("source" and "detector"). Accordingly, the flavor transitions are a result of interference of the diagrams with neutrinos of different masses in the intermediate states. The statistically averaged probability of the process is representable as a multidimensional integral of the product of the factors which describe the differential flux density of massless neutrinos from the source, differential cross section of the neutrino interaction with the detector and a dimensionless factor responsible for the flavor transition. The conditions are analyzed under which the last factor can be treated as the flavor transition probability in the usual quantum-mechanical sense.Comment: 27 pages,7 figures, iopart class. Includes minor corrections made in proofs. References update
    • …
    corecore