8,087 research outputs found

    Semiclassical transport in nearly symmetric quantum dots II: symmetry-breaking due to asymmetric leads

    Get PDF
    In this work - the second of a pair of articles - we consider transport through spatially symmetric quantum dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory of transport to find the symmetry-induced contributions to weak localization corrections and universal conductance fluctuations for dots with left-right, up-down, inversion and four-fold symmetries. We show that all these contributions are suppressed by asymmetric leads, however they remain finite whenever leads intersect with their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contributions to universal conductance fluctuations is the square of the suppression of contributions to weak localization. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.Comment: (18pages - 9figures) This is the second of a pair of articles (v3 typos corrected - including in equations

    Clinical relevance of soluble c-erbB-2 for patients with metastatic breast cancer predicting the response to second-line hormone or chemotherapy

    Get PDF
    Concentrations of soluble c-erbB-2 were determined in the sera of 64 patients with distant metastasis from advanced breast cancer receiving second-line hormone or chemotherapy in comparison to 35 breast cancer patients without detectable recurrent disease and 17 healthy blood donors. The sera of non-metastatic breast cancer patients contained s-erbB-2 concentrations similar to those of healthy blood donors. Patients with distant metastasis from advanced breast cancer had significantly higher values of s-erbB-2 in comparison to patients with non-disseminated disease (mean: 59.6 vs. 11.6 U/ml; p = 0.022). A significant correlation was observed between s-erbB-2 serum levels and serum LDH concentrations (p < 0.001), levels of alkaline phosphatase (p < 0.001), and the presence of hepatic metastasis (p = 0.001). Time to tumor progression was significantly shorter in patients with s-erbB-2 levels above 40 U/ml (mean: 23.4 vs. 56.7 months; p = 0.002). Furthermore, breast cancer patients with hepatic metastasis and those with elevated s-erbB-2 serum levels above 40 U/ml had limited response to hormone or chemotherapy. Non-responders had significantly higher s-erbB-2 levels (mean: 270.3, range: 42-500 U/ml;) compared with the responder group (mean: 23.1, range: 0-149 U/ml; p < 0.001). Logistic regression analysis indicated that elevated s-erbB-2 serum levels above 40 U/ml independently predicted an unfavorable response to second-line hormone or chemotherapy in patients with advanced metastatic breast cancer. Copyright (C) 2002 S. KargerAG, Basel

    Entropic gravity, minimum temperature, and modified Newtonian dynamics

    Full text link
    Verlinde's heuristic argument for the interpretation of the standard Newtonian gravitational force as an entropic force is generalized by the introduction of a minimum temperature (or maximum wave length) for the microscopic degrees of freedom on the holographic screen. With the simplest possible setup, the resulting gravitational acceleration felt by a test mass m from a point mass M at a distance R is found to be of the form of the modified Newtonian dynamics (MOND) as suggested by Milgrom. The corresponding MOND-type acceleration constant is proportional to the minimum temperature, which can be interpreted as the Unruh temperature of an emerging de-Sitter space. This provides a possible explanation of the connection between local MOND-type two-body systems and cosmology.Comment: 12 pages, v6: published versio

    Modulation of the local density of states within the dd-density wave theory in the underdoped cuprates

    Full text link
    The low temperature scanning tunneling microscopy spectra in the underdoped regime is analyzed from the perspective of coexisting dd-density wave and d-wave superconducting states. The calculations are carried out in the presence of a low concentration of unitary impurities and within the framework of the fully self-consistent Bogoliubov-de Gennes theory, which allows local modulations of the magnitude of the order parameters in response to the impurities. Our theory captures the essential aspects of the experiments in the underdoped BSCCO at very low temperatures.Comment: 4 pages, 4 eps figures, RevTex4. New added material as well as reference

    Real-Time Operating System/360

    Get PDF
    RTOS has a cost savings advantage for real-time applications, such as those with random inputs requiring a flexible data routing facility, display systems simplified by a device independent interface language, and complex applications needing added storage protection and data queuing

    Considerations for an Ac Dipole for the LHC

    Get PDF
    Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.Comment: proceedings of the 2007 Particle Accelerator Conferenc

    Parametrization of the Driven Betatron Oscillation

    Full text link
    An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam motion in a synchrotron. By observing this coherent motion, the optical parameters can be directly measured at the beam position monitor locations. The driven oscillation induced by an AC dipole will generate a phase space ellipse which differs from that of the free oscillation. If not properly accounted for, this difference can lead to a misinterpretation of the actual optical parameters, for instance, of 6% or more in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the linear optics parameters is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. Beam position data taken under the influence of an AC dipole, with this new interpretation in mind, can lead to more precise measurements of the normal Courant-Snyder parameters. This new parameterization of the driven motion is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl
    corecore