215 research outputs found

    Ecological principles to guide the development of crop variety mixtures

    Get PDF
    Crop variety mixtures can provide many benefits, including pathogen suppression and increased yield and yield stability. However, these benefits do not necessarily occur in all mixtures, and the benefits of diversity may be compromised by disadvantages due to increased crop heterogeneity. In-field development of mixtures by assembling many combinations of crop genotypes without prior expectation about which genotypes need to be combined to produce well-performing mixtures results in prohibitively large designs. Therefore, effective tools are required to narrow down the number of promising variety mixtures, and to then identify in experiments which of these deliver the highest benefits. Here, we first review current knowledge about the mechanisms underlying effects in ecological diversity experiments and in current agricultural applications. We then discuss some of the principal difficulties arising in the application of this knowledge to develop good variety mixtures. We also discuss non-conventional approaches to solve some of these issues. In particular, we highlight the potential and limitations of trait-based methods to determine good variety mixing partners, and argue that nontraditional traits and trait-derived metrics may be needed for the trait-based approach to deliver its full potential. Specifically, we argue that good mixing partners can be identified using modern genetic and genomic approaches. Alternatively, good mixtures may be obtained by combining varieties that respond differently to environmental variation; such varieties could easily be identified in standard variety testing trials. Preliminary analyses show that niche differences underlying the different environmental responses can indicate functional complementarity and promote mixture yield and yield stability

    Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction

    Get PDF
    In the area of laser material processing, versatile applications for cutting glasses and transparent polymers exist. However, parasitic effects such as the creation of step-like structures appear when laser cutting inside a transparent material. To date, these structures were only described empirically. This work establishes the physical and chemical mechanisms behind the observed effects and describes the influence of process and material parameters onto the creation of step-like structures in hydrogel, Dihydroxyethylmethacrylat (HEMA). By focusing laser pulses in HEMA, reduced pulse separation distance below 50 nm and rise in pulse energy enhances the creation of unintended step-like structures. Spatial resolved Raman-spectroscopy was used to measure the laser induced chemical modification, which results into a reduced breakdown threshold. The reduction in threshold influences the position of optical breakdown for the succeeding laser pulses and consequently leads to the step-like structures. Additionally, the experimental findings were supplemented with numerical simulations of the influence of reduced damage threshold onto the position of optical breakdown. In summary, chemical material change was defined as cause of the step-like structures. Furthermore, the parameters to avoid these structures were identified

    The geometric albedo of the hot Jupiter HD 189733b measured with CHEOPS

    Get PDF
    Context. Measurements of the occultation of an exoplanet at visible wavelengths allow us to determine the reflective properties of a planetary atmosphere. The observed occultation depth can be translated into a geometric albedo. This in turn aids in characterising the structure and composition of an atmosphere by providing additional information on the wavelength-dependent reflective qualities of the aerosols in the atmosphere. Aims. Our aim is to provide a precise measurement of the geometric albedo of the gas giant HD 189733b by measuring the occultation depth in the broad optical bandpass of CHEOPS (350–1100 nm). Methods. We analysed 13 observations of the occultation of HD 189733b performed by CHEOPS utilising the Python package PyCHEOPS. The resulting occultation depth is then used to infer the geometric albedo accounting for the contribution of thermal emission from the planet. We also aid the analysis by refining the transit parameters combining observations made by the TESS and CHEOPS space telescopes. Results. We report the detection of an 24.7 ± 4.5 ppm occultation in the CHEOPS observations. This occultation depth corresponds to a geometric albedo of 0.076 ± 0.016. Our measurement is consistent with models assuming the atmosphere of the planet to be cloud-free at the scattering level and absorption in the CHEOPS band to be dominated by the resonant Na doublet. Taking into account previous optical-light occultation observations obtained with the Hubble Space Telescope, both measurements combined are consistent with a super-stellar Na elemental abundance in the dayside atmosphere of HD 189733b. We further constrain the planetary Bond albedo to between 0.013 and 0.42 at 3σ confidence. Conclusions. We find that the reflective properties of the HD 189733b dayside atmosphere are consistent with a cloud-free atmosphere having a super-stellar metal content. When compared to an analogous CHEOPS measurement for HD 209458b, our data hint at a slightly lower geometric albedo for HD 189733b (0.076 ± 0.016) than for HD 209458b (0.096 ± 0.016), or a higher atmospheric Na content in the same modelling framework. While our constraint on the Bond albedo is consistent with previously published values, we note that the higher-end values of ~0.4, as derived previously from infrared phase curves, would also require peculiarly high reflectance in the infrared, which again would make it more difficult to disentangle reflected and emitted light in the total observed flux, and therefore to correctly account for reflected light in the interpretation of those phase curves. Lower reported values for the Bond albedos are less affected by this ambiguity

    Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE

    Get PDF
    The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse

    OPTICAL DESIGN AND BREADBOARD OF THE RAMAN SPECTROMETER FOR MMX

    Get PDF
    This paper reports the laboratory confirmation of an optical design for a 0.2 numerical aperture confocal miniaturized, ruggedized Raman visible light spectroscope (RAX) to be borne by an autonomous rover landed on the martian moon, Phobos

    In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman meausrements

    Get PDF
    Mineralogy is the key to understanding the origin of Phobos and its position in the evolution of the Solar System. In situ Raman spectroscopy on Phobos is an important tool to achieve the scientifc objectives of the Martian Moons eXploration (MMX) mission, and maximize the scientifc merit of the sample return by characterizing the mineral composition and heterogeneity of the surface of Phobos. Conducting in situ Raman spectroscopy in the harsh environment of Phobos requires a very sensitive, compact, lightweight, and robust instrument that can be carried by the compact MMX rover. In this context, the Raman spectrometer for MMX (i.e., RAX) is currently under development via international collaboration between teams from Japan, Germany, and Spain. To demonstrate the capability of a compact Raman system such as RAX, we built an instrument that reproduces the optical performance of the fight model using commercial of-the-shelf parts. Using this performance model, we measured mineral samples relevant to Phobos and Mars, such as anhydrous silicates, carbonates, and hydrous minerals. Our measurements indicate that such minerals can be accurately identifed using a RAX-like Raman spectrometer. We demonstrated a spectral resolution of approximately 10 cm−1, high enough to resolve the strongest olivine Raman bands at ~820 and ~850 cm−1, with highly sensitive Raman peak measurements (e.g., signal-to-noise ratios up to 100). These results strongly suggest that the RAX instrument will be capable of determining the minerals expected on the surface of Phobos, adding valuable information to address the question of the moon’s origin, heterogeneity, and circum-Mars material transport

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore