5,169 research outputs found

    Microencapsulation of clove essential oil with gelatin and alginate

    Get PDF
    Content: Essential oils are of commercial interest primarily because of their potential antimicrobial, antifungal and antioxidant properties and for being of natural origin, which generally represents lower risk to the environment and human health. Clove essential oil not only contains many kinds of biological active compositions but also has highly effective and comprehensive antibacterial functions. Remarkably, clove has strong antimicrobial activities against a wide range of pathogenic microorganisms. To prevent chemical changes the oil is microencapsulated. The aim of this study is to develop essential oil microcapsules with gelatin and alginate. Various solutions were prepared for the capsule wall material at different concentrations. The encapsulation efficiency (%) was accessed and the microcapsules were characterized by oil content (%), oil charge (%), morphology, functional groups present, thermogravimetric analysis and by Fourier transform - infrared spectral analysis. FT-IR spectra of the clove oil shows some special peaks at 1148,01 and 1033,33 cm-1. The spectra of the capsule showed peaks 1148.34 and 1033.29 cm -1, the same peaks present in clove oil, showing that the encapsulation did not alter the structure of the oil's main assets. In case of the gelatin and alginate microcapsules containing clove oil, most of the characteristic peaks of clove oil remained unchanged, indicating the successful incorporation of clove oil into the microcapsules and the chemical stability of the clove oil after encapsulation. In otherwords, there was no significant chemical interaction between the oil and the wall of the microcapsule. Take-Away: The clove oil was microencapsulated according the FTIR spectra

    Three-point correlations for quantum star graphs

    Full text link
    We compute the three point correlation function for the eigenvalues of the Laplacian on quantum star graphs in the limit where the number of edges tends to infinity. This extends a work by Berkolaiko and Keating, where they get the 2-point correlation function and show that it follows neither Poisson, nor random matrix statistics. It makes use of the trace formula and combinatorial analysis.Comment: 10 pages, 2 figure

    Giant mass and anomalous mobility of particles in fermionic systems

    Full text link
    We calculate the mobility of a heavy particle coupled to a Fermi sea within a non-perturbative approach valid at all temperatures. The interplay of particle recoil and of strong coupling effects, leading to the orthogonality catastrophe for an infinitely heavy particle, is carefully taken into account. We find two novel types of strong coupling effects: a new low energy scale TT^{\star} and a giant mass renormalization in the case of either near-resonant scattering or a large transport cross section σ\sigma. The mobility is shown to obey two different power laws below and above TT^{\star}. For σλf2\sigma\gg\lambda_f^2, where λf\lambda_f is the Fermi wave length, an exponentially large effective mass suppresses the mobility.Comment: 4 pages, 4 figure

    A diagrammatic treatment of neutrino oscillations

    Full text link
    We present a covariant wave-packet approach to neutrino flavor transitions in vacuum. The approach is based on the technique of macroscopic Feynman diagrams describing the lepton number violating processes of production and absorption of virtual massive neutrinos at the macroscopically separated space-time regions ("source" and "detector"). Accordingly, the flavor transitions are a result of interference of the diagrams with neutrinos of different masses in the intermediate states. The statistically averaged probability of the process is representable as a multidimensional integral of the product of the factors which describe the differential flux density of massless neutrinos from the source, differential cross section of the neutrino interaction with the detector and a dimensionless factor responsible for the flavor transition. The conditions are analyzed under which the last factor can be treated as the flavor transition probability in the usual quantum-mechanical sense.Comment: 27 pages,7 figures, iopart class. Includes minor corrections made in proofs. References update

    Separate Universes Do Not Constrain Primordial Black Hole Formation

    Full text link
    Carr and Hawking showed that the proper size of a spherical overdense region surrounded by a flat FRW universe cannot be arbitrarily large as otherwise the region would close up on itself and become a separate universe. From this result they derived a condition connecting size and density of the overdense region ensuring that it is part of our universe. Carr used this condition to obtain an upper bound for the density fluctuation amplitude with the property that for smaller amplitudes the formation of a primordial black hole is possible, while larger ones indicate a separate universe. In contrast, we find that the appearance of a maximum is not a consequence of avoiding separate universes but arises naturally from the geometry of the chosen slicing. Using instead of density a volume fluctuation variable reveals that a fluctuation is a separate universe iff this variable diverges on superhorizon scales. Hence Carr's and Hawking's condition does not pose a physical constraint on density fluctuations. The dynamics of primordial black hole formation with an initial curvature fluctuation amplitude larger than the one corresponding to the maximum density fluctuation amplitude was previously not considered in detail and so we compare it to the well-known case where the amplitude is smaller by presenting embedding and conformal diagrams of both types in dust spacetimes.Comment: Updated version corresponds to the published version 10.1103/PhysRevD.83.124025, 22 pages, 22 figure

    Coherent Matter Wave Transport in Speckle Potentials

    Full text link
    This article studies multiple scattering of matter waves by a disordered optical potential in two and in three dimensions. We calculate fundamental transport quantities such as the scattering mean free path s\ell_s, the Boltzmann transport mean free path \elltrb, and the Boltzmann diffusion constant DBD_B, using a diagrammatic Green functions approach. Coherent multiple scattering induces interference corrections known as weak localization which entail a reduced diffusion constant. We derive the corresponding expressions for matter wave transport in an correlated speckle potential and provide the relevant parameter values for a possible experimental study of this coherent transport regime, including the critical crossover to the regime of strong or Anderson localization.Comment: 33 pages, minor corrections, published versio

    Non-relativistic effective theory of dark matter direct detection

    Full text link
    Dark matter direct detection searches for signals coming from dark matter scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this paper, a simple non-relativistic effective theory is constructed to describe interactions between dark matter and nuclei without referring to any underlying high energy models. It contains the minimal set of operators that will be tested by direct detection. The effective theory approach highlights the set of distinguishable recoil spectra that could arise from different theoretical models. If dark matter is discovered in the near future in direct detection experiments, a measurement of the shape of the recoil spectrum will provide valuable information on the underlying dynamics. We bound the coefficients of the operators in our non-relativistic effective theory by the null results of current dark matter direct detection experiments. We also discuss the mapping between the non-relativistic effective theory and field theory models or operators, including aspects of the matching of quark and gluon operators to nuclear form factors.Comment: 35 pages, 3 figures, Appendix C.3 revised, acknowledgments and references adde

    Signatures of photon localization

    Full text link
    Signatures of photon localization are observed in a constellation of transport phenomena which reflect the transition from diffusive to localized waves. The dimensionless conductance, g, and the ratio of the typical spectral width and spacing of quasimodes, \delta, are key indicators of electronic and classical wave localization when inelastic processes are absent. However, these can no longer serve as localization parameters in absorbing samples since the affect of absorption depends upon the length of the trajectories of partial waves traversing the sample, which are superposed to create the scattered field. A robust determination of localization in the presence of absorption is found, however, in steady-state measurements of the statistics of radiation transmitted through random samples. This is captured in a single parameter, the variance of the total transmission normalized to its ensemble average value, which is equal to the degree of intensity correlation of the transmitted wave, \kappa. The intertwined effects of localization and absorption can also be disentangled in the time domain since all waves emerging from the sample at a fixed time delay from an exciting pulse, t, are suppressed equally by absorption. As a result, the relative weights of partial waves emerging from the sample, and hence the statistics of intensity fluctuations and correlation, and the suppression of propagation by weak localization are not changed by absorption, and manifest the growing impact of weak localization with t.Comment: RevTex 16 pages, 12 figures; to appear in special issue of J. Phys. A on quantum chaotic scatterin
    corecore