38 research outputs found

    NK cells in self-limited HCV infection exhibit a more extensively differentiated, but not memory-like, repertoire

    Get PDF
    Natural killer (NK) cells have long been thought of as a purely innate immune cell population, but increasing reports have described developmental and functional qualities of NK cells that are commonly associated with cells of the adaptive immune system. Of these features, the ability of NK cells to acquire functional qualities associated with immunological memory and continuous differentiation resulting in the formation of specific NK cell repertoires has recently been highlighted in viral infection settings. By making use of a unique cohort of monitored, at-risk intravenous drug users in this study, we were able to dissect the phenotypic and functional parameters associated with NK cell differentiation and NK cell memory in patients 3 years after acute HCV infection and either the subsequent self-clearance or progression to chronicity. We observed increased expression of cytolytic mediators and markers CD56bright and NKp46+ of NK cells in patients with chronic, but not self-limited HCV infection. Patients with a self-limited infection expressed higher levels of differentiation-associated markers CD57 and KIRs, and lower levels of NKG2A. A more extensively differentiated NK cell phenotype is associated with self-clearance in HCV patients, while the NK cells of chronic patients exhibited more naïve and effector NK cell phenotypic and functional characteristics. The identification of these distinct NK cell repertoires may shed light on the role NK cells play in determining the outcome of acute HCV infections, and the underlying immunological defects that lead to chronicity

    Immunogenicity and reactogenicity of vaccine boosters after Ad26.COV2.S priming

    Get PDF
    BACKGROUND The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26. COV2.S priming dose are unclear.METHODSIn this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26. COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting.RESULTSHomologous or heterologous booster vaccination in 434 participants resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration.CONCLUSIONSThe Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26. COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting.Immunogenetics and cellular immunology of bacterial infectious disease

    Fourth mRNA COVID-19 vaccination in immunocompromised patients with haematological malignancies (COBRA KAI): a cohort study

    Get PDF
    Background Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration > 10 BAU/mL and a previous SARS-CoV-2 infection as N IgG > 14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wildtype (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution

    Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity

    Get PDF
    Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (Fc gamma RIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger Fc gamma RIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.Proteomic

    HIV-1 replication in macrophages

    Get PDF
    Lentiviruses such as the human immunodeficiency virus type 1 (HIV-1) are considered to be unique amongst the retroviruses due to their ability to replicate in macrophages, which are often referred to as non-dividing cells. The studies described in this thesis focus on the ability of HIV-1 to replicate in primary macrophages and the cellular conditions involved in this process

    Reply

    No full text
    corecore