15 research outputs found

    Ferroelectric photovoltaic properties in doubly substituted (Bi0.9La0.1)(Fe0.97Ta0.03)O3 thin films

    Get PDF
    This work was supported by the DOE-EPSCoR Grant No. DE-FG02-08ER46526. Acknowledgment is also due to NSF Grant No. #1002410 for providing fellowships to R.K.K., D.B., and J.S.Y.Doubly substituted [Bi0.9La0.1][Fe0.97Ta0.03]O3 (BLFTO) films were fabricated on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition. The ferroelectric photovoltaic properties of ZnO:Al/BLFTO/Pt thin film capacitor structures were evaluated under white light illumination. The open circuit voltage and short circuit current density were observed to be ∼0.20 V and ∼1.35 mA/cm2, respectively. The band gap of the films was determined to be ∼2.66 eV, slightly less than that of pure BiFeO3 (2.67 eV). The PVproperties of BLFTO thin films were also studied for various pairs of planar electrodes in different directions in polycrystalline thin films.Publisher PDFPeer reviewe

    Unipolar resistive switching in planar Pt/BiFeO3/Pt structure

    Get PDF
    This work was supported by the NASA EPSCoR Grant # NNX13AB22A. Financial support to various researchers from IFN-NSF grant # EPS 1002410 (RSK, DB, YS and BRW) is gratefully acknowledged. S. K. is thankful to UGC, India for a Raman fellowship under Indo-US 21st century knowledge initiatives (No:5-53/2013(I.C)).We report unipolar resistive switching suitable for nonvolatile memory applications in polycrystalline BiFeO3 thin films in planar electrode configuration with non-overlapping Set and Reset voltages, On/Off resistance ratio of similar to 10(4) and good data retention (verified for up to 3,000 s). We have also observed photovoltaic response in both high and low resistance states, where the photocurrent density was about three orders of magnitude higher in the low resistance state as compared to the high resistance state at an illumination power density of similar to 100 mW/cm(2). Resistive switching mechanisms in both resistance states of the planar device can be explained by using the conduction filament (thermo-chemical) model. (C) 2015 Author(s).Publisher PDFPeer reviewe

    Holmium hafnate : an emerging electronic device material

    Get PDF
    Financial support from DOE Grant No. DE-FG02-08ER46526 is acknowledged. S.P.P. is grateful to NSF for financial assistance under Grant No. NSF-EFRI RESTOR #1038272. Y.S. is thankful to IFN-NSF for doctoral fellowship under NSF-RII-0701525 grant.We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of similar to 20 and very low dielectric loss of similar to 0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.Publisher PDFPeer reviewe

    Enhanced resistive switching in forming-free graphene oxide films embedded with gold nanoparticles deposited by electrophoresis

    No full text
    Forming-free resistive random access memory (ReRAM) devices having low switching voltages are a prerequisite for their commercial applications. In this study, the forming-free resistive switching characteristics of graphene oxide (GO) films embedded with gold nanoparticles (Au Nps), having an enhanced on/off ratio at very low switching voltages, were investigated for non-volatile memories. The GOAu films were deposited by the electrophoresis method and as-grown films were found to be in the low resistance state; therefore no forming voltage was required to activate the devices for switching. The devices having an enlarged on/off ratio window of ~106 between two resistance states at low voltages (<1 V) for repetitive dc voltage sweeps showed excellent properties of endurance and retention. In these films Au Nps were uniformly dispersed over a large area that provided charge traps, which resulted in improved switching characteristics. Capacitance was also found to increase by a factor of ~10, when comparing high and low resistance states in GOAu and pristine GO devices. Charge trapping and de-trapping by Au Nps was the mechanism responsible for the improved switching characteristics in the films

    Enhanced resistive switching in forming-free graphene oxide films embedded with gold nanoparticles deposited by electrophoresis

    No full text
    Forming-free resistive random access memory (ReRAM) devices having low switching voltages are a prerequisite for their commercial applications. In this study, the forming-free resistive switching characteristics of graphene oxide (GO) films embedded with gold nanoparticles (Au Nps), having an enhanced on/off ratio at very low switching voltages, were investigated for non-volatile memories. The GOAu films were deposited by the electrophoresis method and as-grown films were found to be in the low resistance state; therefore no forming voltage was required to activate the devices for switching. The devices having an enlarged on/off ratio window of ~106 between two resistance states at low voltages (<1 V) for repetitive dc voltage sweeps showed excellent properties of endurance and retention. In these films Au Nps were uniformly dispersed over a large area that provided charge traps, which resulted in improved switching characteristics. Capacitance was also found to increase by a factor of ~10, when comparing high and low resistance states in GOAu and pristine GO devices. Charge trapping and de-trapping by Au Nps was the mechanism responsible for the improved switching characteristics in the films

    Ferroelectric photovoltaic properties in doubly substituted (Bi<sub>0.9</sub>La<sub>0.1</sub>)(Fe<sub>0.97</sub>Ta<sub>0.03</sub>)O<sub>3</sub> thin films

    No full text
    Doubly substituted [Bi0.9La0.1][Fe0.97Ta0.03]O3 (BLFTO) films were fabricated on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition. The ferroelectric photovoltaic properties of ZnO:Al/BLFTO/Pt thin film capacitor structures were evaluated under white light illumination. The open circuit voltage and short circuit current density were observed to be ∼0.20 V and ∼1.35 mA/cm2, respectively. The band gap of the films was determined to be ∼2.66 eV, slightly less than that of pure BiFeO3 (2.67 eV). The PVproperties of BLFTO thin films were also studied for various pairs of planar electrodes in different directions in polycrystalline thin films

    Ferroelectric photovoltaic properties in doubly substituted (Bi<sub>0.9</sub>La<sub>0.1</sub>)(Fe<sub>0.97</sub>Ta<sub>0.03</sub>)O<sub>3</sub> thin films

    No full text
    Doubly substituted [Bi0.9La0.1][Fe0.97Ta0.03]O3 (BLFTO) films were fabricated on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition. The ferroelectric photovoltaic properties of ZnO:Al/BLFTO/Pt thin film capacitor structures were evaluated under white light illumination. The open circuit voltage and short circuit current density were observed to be ∼0.20 V and ∼1.35 mA/cm2, respectively. The band gap of the films was determined to be ∼2.66 eV, slightly less than that of pure BiFeO3 (2.67 eV). The PVproperties of BLFTO thin films were also studied for various pairs of planar electrodes in different directions in polycrystalline thin films
    corecore