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We report structural, optical, charge transport, and temperature properties as well as the frequency

dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an

alternative high-k dielectric for future silicon technology devices. A high dielectric constant of

�20 and very low dielectric loss of �0.1% are temperature and voltage independent at 100 kHz

near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-

based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined

by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science

of the HHO metal oxide and its potential application as a high-k dielectric for the next generation

of complementary metal-oxide-semiconductor devices. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4915503]

Moore’s law1 which states that the number of transistors

per chip doubles approximately every 18 months is the driv-

ing force in delivering microprocessors with increased tran-

sistor density, faster switching speed, and lower power

characteristics from one technology generation to another.2

In this regard, downscaling of the metal-insulator-semicon-

ductor (MIS) stacks and metal-insulator-metal (MIM)

capacitors is being effected in complementary metal-oxide-

semiconductor (CMOS) devices. The most difficult chal-

lenge to meet this law is to deliver materials with high

density at the nanometer scale. One critical component in

high performance logic (e.g., metal-oxide-semiconductor

field-effect transistor (MOSFET)) and memory [e.g.,

dynamic random access memory (DRAM) and resistive

RAM (RRAM)] devices is a thin layer of insulator/dielectric

oxide material with significantly enhanced physical proper-

ties (such as large bandgap, high linear dielectric constant,

reduced loss tangent, lower leakage currents, and CMOS

process compatibility) in order to continue aggressive scal-

ing.3 Under this context, we have developed the ternary ox-

ide material, Ho2Hf2O7 (HHO) in order to investigate how

the addition of Ho2O3
4 affects the dielectric/physical proper-

ties of HfO2
5 from not only a high-k engineering point of

view but also to learn about the physics of the material.

Additionally, high-k epitaxy in which the dielectric material

is epitaxial and lattice-matched to the underlying silicon,

forming a clean/abrupt interface, is projected as the solution

for achieving sub-nanometer electrical functional thickness

with minimized leakage currents (standby power), good reli-

ability, and a high electrical breakdown.6 Our effort is to sta-

bilize HfO2 in its cubic phase by the addition of Ho2O3,

hoping to achieve functional properties superior than either

of the individual end-member precursors. This class of oxide

materials can also serve as antireflective/protective coatings

and refractory matrices for optical devices, dielectric

ceramics for microwave wireless communication devices,

ionic conductors, nuclear waste-storage materials, and ther-

mal coatings.7–9 In this letter, we present ceramic holmium

hafnate as a promising alternative high-k dielectric material,

emphasizing its wide bandgap and linear high-k value with

low leakage currents.

Polycrystalline powders of HHO were synthesized using

high-energy solid state reaction from a stoichiometric mixture

(1:1 molar ratio) of HfO2 and Ho2O3 powders. High purity

(>99.95%) reagents/precursors from Alfa Aesar were pre-fired

at 700 �C in argon atmosphere for about 2 h to remove water

content and other volatile impurities. Mechanical ball milling

of stoichiometric amounts of hafnia and holmia was carried

out overnight in methanol for fine mixing, followed by calcina-

tion in air at 1500 �C for 24 h, using a Carbolite HTF1700

furnace with heating and cooling rates of 5 �C/min. The as-

synthesized powders with 7 wt. % polyvinyl alcohol were

pressed into thick pellets (/¼ 13 mm, thickness¼ 0.75 mm) at

a uniaxial pressure of 4 tons and later sintered at 1550 �C for 6

h. Phase purity of the sample was checked in slow scan mode

(0.25�/min) with a Rigaku Ultima III X-ray diffractometer

(XRD) equipped with CuKa radiation (k¼ 1.5405 Å) source

operating in Bragg-Brentano (h-2h) geometry at 40 kV and

40 mA. The Rietveld structure refinement of the unit cell and

determination of the crystallographic parameters were carried

out using a FullProf Suite software package10 following

Young’s strategy.11 Local crystal structure analysis was made

via temperature-dependent Raman spectroscopy using a Jobin

Yvon T64000 spectrometer operating in backscattering config-

uration and in subtractive mode. About 10 mW of continuous

wave power from a Coherent argon ion laser (Innova 90–5) at

5145 Å was focused to a small spot size of �2 lm2. A liquid-

nitrogen-cooled CCD device collected the Raman scattered

signal through an 80� objective. We collected low and high

temperature spectra of the sample in vacuum from 83 K to
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1200 K in steps of 50 K using Linkam TP93 and TMS94 tem-

perature controllers and liquid nitrogen pump (LNP) cooling

module having 61 �C accuracy. Room-temperature surface

topography of the sample at 3500 � and 10 000 � magnifica-

tions was analyzed in vacuum using a scanning electron micro-

scope (SEM) having a resolution better than 1 lm. Elemental

analysis of the pellet was carried out by recording the energy-

dispersive X-ray (EDX) spectra. X-ray fluorescence (XRF)

spectra were collected to identify and to determine the concen-

trations of the elements present in the sample. Diffuse reflec-

tance absorption spectra of opaque HHO ceramics were

recorded in the spectral window of 190–800 nm using a Varian

Cary UV-Vis spectrophotometer equipped with an integrating

sphere. For dielectric and electrical characterization, HHO pel-

lets were DC magnetron sputtered (power density of �1 W/

cm2) at room temperature with Pt to form the top and bottom

electrodes. The resulting Pt/HHO/Pt MIM structures were

annealed at 400 �C in high purity oxygen ambient for proper

adhesion of Pt and recovery of the possible sputter damage.

The dielectric and DC leakage current measurements were

done under vacuum (�10�6Torr) using an HP4294A imped-

ance analyzer and Keithley electrometer (model #6517A).

Thermal control was achieved in the range of 82–600 K using

a variable temperature micro-probe system equipped with a

programmable temperature controller [MMR Technologies,

Inc.]. The samples were kept in the dark during electrical

characterization.

The effective cationic radii of 8–fold coordinated Ho3þ

in Ho2O3 and Hf4þ in HfO2 are 1.015 Å and 0.83 Å,12 respec-

tively, and the corresponding tolerance factor (tf ¼ rA3þ=rB4þ )

of 1.223 (<1.46)13 predicts the stable formation of HHO

defect (disordered) fluorite structure with higher symmetry

(decreased degree of distortion) instead of ordered pyro-

chlores (increased ion disorder). Figure 1 shows the experi-

mental and Rietveld simulated XRD patterns of HHO

powders representing defect fluorite structure belonging to

space group (Fm�3m or O5
h) No. 225, with the sixfold-

coordinated (Z¼ 6) cations (Ho3þ/Hf4þ) and the anions (O2�)

at 4a (m�3m symmetry) (0, 0, 0) and 8c (�43m symmetry)

(0.25, 0.25, 0.25) sites, respectively. The sharp peaks without

any superstructure pyrochlore reflections were assigned to

their Miller indices with unit cell parameters of the HHO lat-

tice, a¼ b¼ c¼ 5.198 Å and a¼ b¼ c¼ 90�. It is worth not-

ing that HHO is found to be a closely lattice-matched oxide

with silicon (5.43 Å) to enable epitaxial/textured growth on

semiconductor. A three-dimensional model of HHO unit cell

projected along c-axis is illustrated in the inset of Fig. 1,

where the Ho3þ/Hf4þ occupies face-centered positions in a

cubic unit cell with anions in the eight tetrahedral sites

between them. X-ray scattering power of O is much less than

that of rare-earth or transition metal ions (Ho3þ/Hf4þ),

whereas Raman spectroscopy is more sensitive to oxygen-

metal vibrations than to metal-metal vibrations and hence is

an excellent technique to probe the disorder in the lattice. The

factor group analysis for the fluorite structure14 with the site

symmetry Oh for cation and Td for oxygen ion is given by

COpt ¼ FInf rared
1u þ FRaman

2g and predicts only one Raman-active

mode F2g originating from the symmetric stretching of oxy-

gen atoms around metal ions in MO6 octahedra. Cubic fluorite

phase formation of HHO was confirmed by room temperature

Raman spectroscopy, where a broad phonon mode centered

around 300–400 cm�1 spectral region was identified, as

shown in Fig. 1(b). The observed large linewidth can be

attributed to the static atomic displacement from their ideal

positions as a result of lattice strain due to the sample’s ther-

mal history and more significantly due to compositional sub-

stitution by atoms with mismatched cationic radii and

valencies.15 The temperature dependent vibrational spectra

(data shown for 83 K and 1200 K) depicted in Fig. 1(b) were

found to be nearly identical to that obtained at room tempera-

ture (with a nominal softening with increasing temperature)

confirming that the HHO defect-fluorite phase is quite stable;

hence, it is a promising material for various applications in a

remarkably wide temperature range. Two more broad bands

observed at lower frequencies �110 cm�1 and �184 cm�1

may be the normally forbidden zone-boundary acoustic modes

appearing due to lattice disorder. With increase in tempera-

ture, structural disorder increases and hence the intensity of

these peaks is enhanced. HRTEM image of the HHO powder

sample given in the inset of Fig. 1(b) reveals the polycrystal-

line phase formation and illustrates the interplanar (Ho/Hf-

Ho/Hf or O-O) distance of �2.6 Å along the (X00) plane, in

FIG. 1. (a) Rietveld refined room temperature XRD pattern of HHO polycrystalline powders along with Miller indices representing cubic (defect fluorite,

Fm�3m or O5
h) symmetry. The inset shows a three-dimensional structure model of HHO unit cell projected along the c-axis. (b) Raman spectra of HHO ceramics

excited by 514.5 nm Arþ laser line at various temperatures. Dark-field high-resolution transmission electron microscope image of HHO powder sample in the

inset demonstrates its defect fluorite polycrystalline nature and an inter-ionic (Ho/Hf-Ho/Hf or O-O) distance of �2.6 Å along the (X00) direction. (c) EDX

analysis of HHO pellet and SEM micrograph of the sintered pellet (inset).
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fairly good agreement with the results obtained from XRD

Rietveld analysis. Figure 1(c) is a representative EDX spec-

trum of the HHO pellet excited by electron beam of low

energy of 5 kV (low energy was used to minimize charge

accumulation on the insulator sample), showing the presence

of all elements (Ho, Hf, and O). On average, the Ho:Hf atomic

ratio is nearly 1:1 from the intensities of the characteristic

lines and it is in good agreement with the composition stoichi-

ometry of holmia and hafnia precursors prior to calcination

and with the results obtained from XRF analysis (data not

shown). A typical SEM micrograph of the sintered pellet,

depicted in the inset of Fig. 1(c), demonstrates fine, dense,

and close granular structure with an average grain size of

about 2 lm and it shows the presence of pores.

Figure 2 shows the diffuse-reflectance absorption spectra

of HHO ceramic sample. The absorbance A or the Kebulka-

Munk function F was deduced from the spectral reflectance

data using the Kebulka-Munk relation A ¼ F ¼ ð1� R2Þ=2R,

where R is the percentage of reflected light. As shown in the

plot16 of (dF/dk) versus k given in the inset of Fig. 2, diffuse

reflectance spectra exhibit an absorption threshold with an

inflection point at �221 nm (�5.6 eV) that we ascribe to the

bandgap. Such a large bandgap will be of interest for elec-

tronic device applications if the material has sufficiently

enhanced dielectric properties.

Detailed analysis of dielectric and electrical properties

of high-k dielectrics is important for their successful applica-

tion in nanoelectronic devices, such as MOSFET, DRAM,

and RRAM. Figure 3(a) and its inset illustrate the frequency

dependence of relative dielectric permittivity (e0) and loss

tangent (tan d, where d is the phase difference between the

applied electric field and the induced current) of polycrystal-

line HHO high-k dielectrics at zero bias and in the tempera-

ture range of 81 to 600 K. The ceramic pellet was cooled

to 81 K and capacitance and loss tangent were measured

up to a temperature of 600 K in steps of �25 K. The room-

temperature dielectric constant and loss tangent were

determined to be �19–20 and �0.001, respectively. No sig-

nificant dielectric dispersion (almost linear response) was

observed throughout the experimental frequency range.

Also, the observed dielectric variation (De0) is small (64%),

and the measured loss tangent is less than 0.05 throughout

the conventional CMOS device operating temperature of

�200–400 K and at frequencies that ranged from 1

kHz–1 MHz. This polar dielectric material has a smooth fre-

quency response (no relaxation) and it is temperature-stable

having low-loss. These features are advantageous for gate

oxide and DRAM applications. The increase in dielectric

loss with temperature is more pronounced at power frequen-

cies (102 to 103 Hz) and may be ascribed to thermally gener-

ated free carriers which partly contribute to the real part of

dielectric permittivity; hence, this parameter slightly

increases with temperature.17

The absolute complex permittivity is given by the rela-

tion e ¼ e0 � je}, where e0 (a measure of how much energy

from an external electric field is stored in a material) is the

real part and e} (¼ e0 � tan d, a measure of energy dissipa-

tion per period from both dielectric loss and conductivity) is

the imaginary part. In Fig. 3(b), we have plotted the tempera-

ture response of real and imaginary (inset) parts of relative

dielectric permittivity of a polycrystalline HHO pellet in the

frequency range of 100 Hz–1 MHz. e0 (�19–20) and e} (<1)

FIG. 2. Absorption spectra of HHO bulk sample from diffuse-reflectance

spectroscopy. The vertical line in the first derivative of Kebulka-Munk func-

tion with respect to wavelength (dF/dk) versus wavelength (k) plot, given in

the inset, indicates the inflection point, which lies at �221 nm (�5.6 eV).

FIG. 3. (a) Frequency dependence of dielectric constant and loss tangent (inset) of polycrystalline HHO dielectrics in the temperature range of 81–600 K. (b)

Temperature dependence of real (e0) and imaginary (e}) (inset) parts of dielectric constant of the sample measured in the frequency range of 100 Hz–1 MHz.
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were found to be nearly constant (almost linear without any

peak) for experimental frequencies �1 kHz up to 600 K.

This HHO ternary oxide exhibited no dielectric anomaly,

that is, in good agreement with the phase stability revealed

by Raman spectroscopy studies.

The voltage linearity, a key parameter for high-k materi-

als, can be experimentally verified by modeling the C-V

plots with the quadratic law18

DC

C0

¼ Cv � C0

C0

¼ aV2 þ bV; (1)

where V is applied bias voltage; Cv and C0 are the capaci-

tance at a specific applied voltage and at zero voltage; a and

b are the quadratic and linear voltage coefficients, expressed

in units of parts per million (ppm/V2) and ppm/V, respec-

tively; and DC=C0 is the normalized capacitance. a, also

known as the voltage coefficient of capacitance (VCC), is a

more relevant parameter to be minimized. Electric field de-

pendency of normalized capacitance density of Pt/HHO/Pt

MIM structures at 10 kHz, 100 kHz, and 1 MHz evaluated

from data obtained from C-V measurements is given in Fig.

4(a), together with their voltage linearity fits. A linear dielec-

tric response and little hysteresis were observed while

sweeping voltage (electric field) from �10 V (�1.25 �
104 V/m) to þ10 V (þ1.25 � 104 V/m). In other words, e0 is

independent of the magnitude of the applied electric field for

HHO. There is no dispersion in capacitance with applied

bias, confirming the linear dielectric behavior of this elec-

tronic material. Inset (II) of Fig. 4(a) shows the variation in

positive quadratic VCC (4.3–23 ppm/V2) with ac drive fre-

quency. The temperature dependence (81–600 K) of capaci-

tance (k-value) measured at 100 kHz showed little change

(�1% or þ5%) with respect to the room temperature value,

as depicted in inset (I) of Fig. 4(a). The measured quality

factor Q ¼ ð1= tan dÞ was well above the limiting value of 20

at all the measured frequencies (data not shown). This analy-

sis proves that the permittivity of this material has constant

value with respect to frequency and temperature for

operation over a variety of conditions. These properties reveal

the applicability of this material for MIM stacked capacitors,

such as radio frequency (RF) coupling and bypass capacitors

in oscillators and resonator circuits, filter and analog capaci-

tors in analog/mixed-signal (AMS) circuits, decoupling

capacitors for microprocessors (MPUs), and storage capacitors

in DRAM and embedded DRAM (eDRAM)/logic devices.

A key motivation in finding an alternative dielectric is to

have controlled leakage currents when the material is used

either as a gate oxide in logic devices or as a charge storage

layer in MIM capacitor structures. Temperature dependent

leakage current characteristics were recorded in the dark for

Pt/HHO/Pt devices in the 100–600 K temperature range in

order to study their current conduction mechanism(s) and reli-

ability and these are illustrated in Fig. 4(b). The symmetric J-

E (current density versus electric field) curves with weak tem-

perature dependence, obtained while ramping the voltage

(electric field) from �750 V (�9.38 kV/cm) to þ750 V

(þ9.38 kV/cm), can be ascribed to the similarity in material

properties and charge transport mechanisms across the Pt/

HHO and HHO/Pt interfaces. A low leakage current density

of 6.12 � 10�7 A/cm2 was observed at the maximum applied

field (9.38 kV/cm), which validates the charge storage capa-

bilities for its use in future technology nodes. The leakage

data were plotted in Schottky coordinates (lnrdc versus

E1=2=kT), as shown in the inset of Fig. 4(b). The expression

for Schottky charge transport mechanism19 is given by

r ¼ r0 expðbE1=2=kTÞ; (2)

where b ¼ ðe3=ape0e1Þ1=2; and r0 is the low-field conductiv-

ity of the system; E is the electric field strength in the insula-

tor; k is the Boltzmann constant; T is absolute temperature; e
is electronic charge; e0 is the permittivity of free space; e1 is

electronic permittivity of the insulator; and a is 4 for Schottky

emission. A good linear fit in the room temperature Schottky

plot [Eq. (2)] is indicative of electrode/interface-limited

Schottky conduction mechanism due to field assisted thermi-

onic emission of electrons over a barrier UB (UHHO/Pt), the

FIG. 4. (a) Applied electric field dependence of normalized capacitance of Pt/HHO/Pt MIM structure at 300 K for various signal frequencies, along with the re-

spective voltage linearity fits showing good capacitance-voltage linearity of this high-k dielectric. The nominal change in capacitance with temperature meas-

ured at 100 kHz is shown in the inset (I). Inset (II) shows the variation in quadratic voltage coefficient as a function of ac- drive signal frequencies. (b) J-E plot

for Pt/HHO/Pt capacitor at various temperatures. The inset in Fig. 4 demonstrates the temperature dependence of the dc conductivity at different applied elec-

tric fields, along with the Schottky modeling for 300 K data.
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energy offset between Pt Fermi level and HHO conduction

band minima. The electronic dielectric constant (e1) and high

frequency refractive index (n1 ¼
ffiffiffiffiffiffi

e1
p

) of HHO estimated

from the slope of the linear fit of Schottky plot at 300 K are

found to be 4.29 and 2.07, respectively, and these figures are

similar to the values reported for HfO2,20 validating our find-

ings. This small value of e1 in comparison with the high

dielectric constant (19–20) obtained from dielectric measure-

ments implies that the majority of “k” must originate from the

lattice contribution.

In summary, a defect fluorite structured high-k dielectric

HHO is developed and demonstrated as a potential electronic

device material in terms of its structural, optical, charge

transport, and temperature- and frequency-independent

dielectric properties. A wide bandgap of 5.6 eV, a high linear

dielectric constant of �20, and a low dielectric loss of

�0.001 were obtained at ambient conditions. The Pt/HHO/Pt

capacitor showed very low figures (6.12 � 10�7 A/cm2 at

9.38 kV/cm) for interface-limited Schottky emission leakage

currents.
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