2,947 research outputs found

    Cosmic rays studied with a hybrid high school detector array

    Get PDF
    The LORUN/NAHSA system is a pathfinder for hybrid cosmic ray research combined with education and outreach in the field of astro-particle physics. Particle detectors and radio antennae were mainly setup by students and placed on public buildings. After fully digital data acquisition, coincidence detections were selected. Three candidate events confirmed a working prototype, which can be multiplied to extend further particle detector arrays on high schools.Comment: 10 pages, 6 figures. Nigl, A., Timmermans, C., Schellart, P., Kuijpers, J., Falcke, H., Horneffer, A., de Vos, C. M., Koopman, Y., Pepping, H. J., Schoonderbeek, G., Cosmic rays studied with a hybrid high school detector array, Europhysics News (EPN), Vol. 38, No. 5, accepted on 22/08/200

    Mass singularity and confining property in QED3QED_3

    Full text link
    We discuss the properties of the position space fermion propagator in three dimensional QED which has been found previouly based on Ward-Takahashi-identity for soft-photon emission vertex and spectral representation.There is a new type of mass singularity which governs the long distance behaviour.It leads the propagator vanish at large distance.This term corresponds to dynamical mass in position space.Our model shows confining property and dynamical mass generation for arbitrary coupling constant.Since we used dispersion retation in deriving spectral function there is a physical mass which sets a mass scale.For finite cut off we obtain the full propagator in the dispersion integral as a superposition of different massses.Low energy behaviour of the proagator is modified to decrease by position dependent mass.In the limit of zero infrared cut-off the propagator vanishes with a new kind of infrared behaviour.Comment: 22pages,4figures,revtex4,Notational sloppiness are crrected.Submitted to JHE

    China and the crisis : global power, domestic caution and local initiative

    Get PDF
    Even though the global crisis had a quick and dramatic impact on Chinese exports, the Chinese government responded with a range of policy responses that have helped maintain high rates of growth. This success has helped propel China to the centre of global politics, accelerating what many perceive to be a power shift from the West to China. But these gains were achieved by reversing policy in previous years designed to make a fundamental shift in China‟s mode of development, and have highlighted the problems associated with making such a transition. At the moment that many are looking at the Chinese "model" as a potential alternative to the Washington Consensus, one of the consequences of the crisis is to further question the long term efficacy of this "model" in China itself

    Universal neural field computation

    Full text link
    Turing machines and G\"odel numbers are important pillars of the theory of computation. Thus, any computational architecture needs to show how it could relate to Turing machines and how stable implementations of Turing computation are possible. In this chapter, we implement universal Turing computation in a neural field environment. To this end, we employ the canonical symbologram representation of a Turing machine obtained from a G\"odel encoding of its symbolic repertoire and generalized shifts. The resulting nonlinear dynamical automaton (NDA) is a piecewise affine-linear map acting on the unit square that is partitioned into rectangular domains. Instead of looking at point dynamics in phase space, we then consider functional dynamics of probability distributions functions (p.d.f.s) over phase space. This is generally described by a Frobenius-Perron integral transformation that can be regarded as a neural field equation over the unit square as feature space of a dynamic field theory (DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with rectangular support are mapped onto uniform p.d.f.s with rectangular support, again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with arXiv:1204.546

    Nonperturbative Vertices in Supersymmetric Quantum Electrodynamics

    Get PDF
    We derive the complete set of supersymmetric Ward identities involving only two- and three- point proper vertices in supersymmetric QED. We also present the most general form of the proper vertices consistent with both the supersymmetric and U(1) gauge Ward identities. These vertices are the supersymmetric equivalent of the non supersymmetric Ball-Chiu vertices.Comment: seventeen pages late

    Evolution of Liouville density of a chaotic system

    Full text link
    An area-preserving map of the unit sphere, consisting of alternating twists and turns, is mostly chaotic. A Liouville density on that sphere is specified by means of its expansion into spherical harmonics. That expansion initially necessitates only a finite number of basis functions. As the dynamical mapping proceeds, it is found that the number of non-negligible coefficients increases exponentially with the number of steps. This is to be contrasted with the behavior of a Schr\"odinger wave function which requires, for the analogous quantum system, a basis of fixed size.Comment: LaTeX 4 pages (27 kB) followed by four short PostScript files (2 kB + 2 kB + 1 kB + 4 kB

    Chaos and Quantum-Classical Correspondence via Phase Space Distribution Functions

    Full text link
    Quantum-classical correspondence in conservative chaotic Hamiltonian systems is examined using a uniform structure measure for quantal and classical phase space distribution functions. The similarities and differences between quantum and classical time-evolving distribution functions are exposed by both analytical and numerical means. The quantum-classical correspondence of low-order statistical moments is also studied. The results shed considerable light on quantum-classical correspondence.Comment: 16 pages, 5 figures, to appear in Physical Review

    Barriers and facilitators for screening older adults on fall risk in a hospital setting: Perspectives from patients and healthcare professionals

    Get PDF
    We aimed to gain insight into the barriers and facilitators to fall risk screening of older adults visiting the hospital as experienced by patients and healthcare professionals, and to examine the differences between chronic- and acute-care patients. We invited patients (≥ 70 years) attending the nephrology and emergency department to participate in the screening. Patients and their healthcare professionals were asked to complete a self-administered questionnaire based on the “Barriers and Facilitators Assessment Instrument”. Differences in barriers and facilitators between acute- and chronic-care patients were examined with chi-square tests. A total of 216 patients were screened, and 103 completed the questionnaire. They considered many factors as facilitators, and none as barriers. Acute-care patients were more positive than chronic-care patients about healthcare worker characteristics, such as knowledge and skills. After screening, patients were more open to receiving advice regarding fall prevention. The 36 healthcare professionals considered program characteristics to be facilitators and mainly factors regarding healthcare worker characteristics as barriers to implementation. For patients, the outpatient setting seemed to be a good place to be screened for fall risk. Healthcare professionals also suggested that program characteristics could enhance implementation. However, healthcare professionals’ mindsets and the changing of routines are barriers that have to be addressed first
    corecore