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Visualizing the strain evolution during the indentation of colloidal glasses
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We use an analog of nanoindentation on a colloidal glass to elucidate the incipient plastic deformation of
glasses. By tracking the motion of the individual particles in three dimensions, we visualize the strain field
and glass structure during the emerging deformation. At the onset of flow, we observe a power-law distribution
of strain indicating strongly correlated deformation, and reflecting a critical state of the glass. At later stages,
the strain acquires a Gaussian distribution, indicating that plastic events become uncorrelated. Investigation of the
glass structure using both static and dynamic measures shows a weak correlation between the structure and the
emerging strain distribution. These results indicate that the onset of plasticity is governed by strong power-law
correlations of strain, weakly biased by the heterogeneous glass structure.
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I. INTRODUCTION

The investigation of incipient plasticity has been the subject
of intense research in the past years. By addressing the
very earliest stages of deformation, one obtains fundamental
insight into the intrinsic flow mechanism of materials and
the origin of plastic flow. A powerful technique in this
respect is nanoindentation, in which a small tip probes a
small nanometer-size volume to resolve individual relaxation
events at the onset of flow [1–7]. Typically, this technique
measures the applied force as a function of indentation depth
to produce force-displacement curves, in which discontinuities
indicate single events of deformation. The interpretation
of these discontinuities is, however, difficult as the direct
atomic-scale observation of the deformation remains elusive.
While in crystalline materials, the incipient plasticity has been
imaged on a mesoscopic level using combined indentation
and transmission electron microscopy [8], such direct imaging
is not possible for glasses due to the disordered amorphous
structure. Rather, simulations have been used to interpret
the experimental force-displacement curves [2,7]. Due to
computational costs, however, these are performed at high
strain rates, usually orders of magnitude higher than those of
the experiments.

Colloidal crystals and glasses provide good models for
conventional molecular solids [9–12]. The particles, typically
around a micrometer in size, can be imaged and tracked
individually in three dimensions with optical microscopy,
making these systems ideal models to study the dynamics and
deformation of glasses directly in real space [11,12]. Using
simple equipment such as a sewing needle as an indenter,
indentation experiments can be performed that provide direct
analogues of conventional nanoindentation [13], thus allowing
insight into the atomic-scale mechanism of incipient deforma-
tion.

An important open question concerns microscopic correla-
tions at the onset of flow. Since the early observation of amor-
phous materials in bubble raft models [14] and by computer
simulations [15–17], the flow of glasses has been suggested
to occur by localized rearrangements producing macroscopic
strain. According to free volume and constitutive models, such
rearrangements occur preferably at structurally weak spots

that are more compliant to rearrangements. However, already
early work pointed out the importance of elastic coupling
between individual plastic events leading to correlations [18].
Indeed, recent simulations at zero [19] and finite temperature
[20] and experimental work [21] have revealed highly corre-
lated deformation, characterized by avalanches of localized
plastic rearrangements. Such strong correlations indicate a
pronounced susceptibility of the material to the applied stress
field. At the particle scale, however, the deformation should
be largely affected by the heterogeneous structure of the
glass. As shown recently by simulations [22] and atomic
force microscopy experiments [23], the heterogeneity of the
amorphous structure leads to strong variations of the elastic
moduli; this variation should bias rearrangements to occur
at locations that are structurally weak [24,25]. This is also
suggested by free volume [26] and shear transformation zone
theories [27] that relate plastic deformation to the structure
via a structural parameter. The question is then which of
these scenarios—localized or correlated deformation or the
heterogeneous structure—dominates the incipient deformation
and determines the strain evolution. The direct imaging of the
early stages of plasticity would allow important insight into
these issues, but remains prohibitively difficult in conventional
amorphous materials.

In this paper, we use indentation on a colloidal glass to
elucidate the incipient deformation in glasses. By following
the strain distribution with great space and time resolution,
we elucidate correlations at the onset of plastic deformation.
We measure the local elastic modulus from thermally induced
strain fluctuations before indentation; this allows us to locate
structurally weak regions in the quiescent glass. We then indent
the glass and follow the evolution of the microscopic strain in
detail: using correlation functions from equilibrium statistical
physics, we elucidate the mechanical susceptibility of the
material upon the incipient deformation. We find power-law
correlations at the onset of permanent deformation, reminding
of the criticality in second-order equilibrium transitions,
and indicating the high susceptibility of the material in the
early stages of deformation. As the deformation evolves,
this power-law distribution becomes overshadowed by the
Gaussian strain distribution in the high-pressure zone under
the needle. These results confirm and complement previous
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results by us, in which we reported an intriguing cascadelike
mechanism of the incipient deformation [28]. We finally
elucidate the relation between the emerging strain distribution
and the heterogeneous glass structure. A weak but distinct
correlation is observed between soft regions and regions
strongly deformed upon the indentation. Our results thus
highlight the predominance of strain correlations that are
biased by the heterogeneous structure of the glass.

The paper is organized as follows: in Sec. II, we describe
the colloidal system and experimental setup. We then elucidate
the local modulus of the glass from data taken before the
indentation in Sec. III A. The indented glass is analyzed in
Sec. III B. We finally provide conclusions in Sec. IV.

II. EXPERIMENTAL SYSTEM AND SETUP

The colloidal glass consists of silica particles with a diam-
eter of 2r0 = 1.5 μm and a polydispersity of �5% suspended
in a mixture of water (30% vol) and dimethylsulfoxide (70%
vol). This solvent mixture matches the refractive index of the
particles, allowing imaging of the particles deep in the bulk.
A small amount of fluorescein is added to the solvent to make
the particles visible as dark spots on a bright background in
fluorescent imaging. We prepare a dense amorphous film by
rapidly densifying the particles from a dilute suspension onto
a cover slip by centrifugation. To avoid boundary-induced
crystallization, the cover slip surface is coated with a 5 μm
thick layer of polydisperse colloidal particles. We obtain an
amorphous film about 48 μm thick, with a volume fraction of
ϕ � 0.61, well inside the glassy state [10]. The advantage of
the colloidal system is that we can use confocal microscopy
to image the individual particles in three dimensions and
follow their motion in time. We do this by recording three-
dimensional image stacks every minute; a single image stack
takes 30 sec to acquire.

We first investigate the properties of the quiescent glass.
Confocal microscopy is used to image �30 000 particles in a
66 μm × 66 μm × 48 μm volume and follow their motion
in three dimensions during a time interval of 15 min. At each
time step, particle positions are determined with an accuracy
of 0.02 μm in the horizontal, and 0.05 μm in the vertical
direction; this accuracy, determined for our system, is in
agreement with the accuracy reported in Ref. [11]. The local
strain is determined from the relative motion of a particle
with respect to its nearest neighbours. For each particle,
we determine the best affine transformation tensor α that
transforms the nearest-neighbor vectors over the time interval
[12,17]. The symmetric part of α is the strain tensor of the
particle under consideration. We thus compute the thermally
induced strain distribution in the quiescent glass.

We then indent the amorphous colloidal film using a sewing
needle. The needle has an almost hemispherical tip with a
radius of 38 μm and is attached to a piezoelectric translation
stage to move it at a slow and well-controlled speed. We lower
the needle at a constant speed of 2.9 μm/h into the amorphous
sediment, and acquire image stacks every minute for a total
duration of 25 min. We again determine the strain distribution
from the motion of a particle relative to its nearest neighbors.
We compute both the accumulated strain (with respect to the
first frame) and the instantaneous strain (with respect to the

previous frame). The time t = 0 is defined as the instance when
the needle touches the amorphous film, i.e., the upper layer of
particles.

III. RESULTS

A. Structure and dynamics of the quiescent glass

The properties of the quiescent glass are illustrated in Fig. 1.
The pair correlation function depicted in Fig. 1(a) shows
the characteristic short-range order of a liquid with a strong
nearest-neighbor peak indicating the dense packing of a glass.
The mean-square displacement of the particles [Fig. 1(b)]
reveals the characteristic plateau of a glass indicating the
dynamic arrest of the suspension on the experimental time
scale. Nevertheless, strong fluctuations of the particles occur
around their rest positions: the particles exhibit short-time
diffusion in the cage constituted by their neighbors. This
thermal motion leads to fluctuations in the particle positions
that manifest as strain fluctuations. To make these visible,
for each particle, we determine the motion relative to its
nearest neighbors between two subsequent frames, and we
compute the local strain tensor using affine fitting. We show
reconstructions of the local shear strain εxy in subsequent
frames in Figs. 1(c) and 1(d). Regions of alternating strain are
clearly visible (dotted circles); these demarcate fluctuations
of strain. However, no permanent strain builds up as shown
by plotting the mean-square strain as a function of time
in Fig. 1(b): A plateau similar to that of the mean-square
displacement indicates that no strain accumulates over time.

We use these thermally induced strain fluctuations to
determine the elastic modulus of the amorphous film. Because
of local thermal equilibrium, we expect that strain energies
follow a Boltzmann distribution. We can thus determine the
elastic modulus of the amorphous film from the probability
distribution of strain magnitudes. Assuming the glass to be
an isotropic elastic solid with shear modulus, μ, the elastic
energy associated with the shear component εij is Eij =
(1/2)με2

ijVε, where Vε is the volume over which the strain is
computed. Hence, shear strains should occur with probability
P (εij )∝exp(–με2

ijVε/2kT ). To test this prediction, we plot the
relative frequency of strains as a function of ε2

ij in a half-
logarithmic representation in Fig. 1(e). In this representation,
the slope of the data indicates the shear modulus of the
amorphous film in units of (2kT/Vε). A single slope is expected
for a homogeneous material. Instead of a single slope, however,
we notice that the data can be fitted by a range of slopes,
as indicated by the dotted lines demarcating the highest and
lowest slopes. The range of slopes suggests that the modulus
is not homogeneous, but instead varies across the film. The
two slopes yield moduli of μmax = 85kT/r3 and μmin =
18kT/r3, corresponding to 0.85 and 0.18 Pa, respectively.
The heterogeneous glass structure thus appears to result in a
spatially varying modulus, with magnitudes between μmax and
μmin. To confirm this hypothesis, we look at the distribution
of strain in more detail. We notice that the magnitude of
strain fluctuations is indeed not homogeneous across the
sample: Some regions exhibit stronger fluctuations than others,
and they do so persistently over time. Stronger fluctuations
demarcate structurally weaker regions. Assuming that in local
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FIG. 1. (Color online) Structure and dynamics of the quiescent glass. (a) Pair correlation function of the quiescent glass. (b) Mean-square
displacement and mean-square shear strain as a function of time. The pronounced nearest-neighbor peak of the pair correlation function and
the plateau of the mean-square displacement demonstrate glasslike properties. (c), (d) 5 μm thick reconstructions show subsequent strain
distributions in the quiescent glass, 9 μm below the surface of the amorphous film. Circles indicate zones of alternating strain. (e) Frequency
of strain as a function of strain magnitude. Shear strain components εxy , εxz, and εyz are as indicated.

thermal equilibrium, strain fluctuations are excited on average
with thermal energy kT, for every shear strain component εij ,
fluctuations will be observed on average with mean-square
amplitude according to kT = (1/2)μ 〈εij

2〉. This allows us
to measure the local modulus from the average variance of

the local strain. To calculate 〈εij
2〉, we use the time average

of εij
2 over the recorded 15 time steps; no permanent strain

accumulates during this time interval [see Fig. 1(b)]. We thus
obtain the local modulus for each particle and its surrounding,
and we smoothen the results by averaging the modulus of
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FIG. 2. (Color online) Heterogeneity of the elastic modulus and free volume. (a) Local elastic modulus reconstructed from the fluctuations
of strain, in a 5 μm thick section of the glass 9 μm below the surface. (b) Free volume distribution in the same section as depicted in (a). Circles
indicate corresponding regions with high local modulus and low free volume. (c) Normalized correlation of local modulus and free volume as
a function of time for all particles (gray dots and solid line) and high modulus particles (top 10%) (gray dots and dashed line).
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the particle with that of the particle’s nearest neighbors. The
resulting map of the local modulus, shown in Fig. 2(a), reveals
strong heterogeneity; the maximum and minimum values are
indeed in good agreement with the slopes in Fig. 1(e). This
heterogeneity is also in qualitative agreement with computer
simulations of Lennard-Jones glasses [22] and measurements
on metallic glasses by atomic force microscopy [23].

To explore a link between the microscopically varying
modulus and the heterogeneous glass structure, we determine
the free volume of the particles. The free volume indicates
the space within which the center of a particle can move
without moving its neighbors. To estimate the free volume,
we construct Voronoi cells that include all points closer to
the particle than to any other particle. We then move the
Voronoi faces inwards by a distance equal to the particle
diameter. The remaining small volume gives an estimate of
the space in which the center of the particle can move [29].
We smooth the results by averaging the free volume of the
particle under consideration with the free volume of its nearest
neighbors. A grayscale representation of the resulting free
volume distribution is shown in Fig. 2(b). Its heterogeneity
reflects the strongly varying environment of the particles. We
can now compare the distribution of the local modulus and
free volume. By comparing Figs. 2(a) and 2(b), we notice
that regions of high modulus (circles) tend to have smaller
free volumes than the average. We quantify this relation by
determining the normalized correlation coefficient,

Cμ,Vf
=

∑
i (μi − 〈μ〉) (Vf,i − 〈Vf 〉)

√∑
i(μi − 〈μ〉)2

∑
i(Vf,i − 〈Vf 〉)2

, (1)

which correlates fluctuations of the particles’ local shear
modulus, μ, and free volume, Vf . To evaluate Eq. (1), we
use the time average of μ, and correlate it with instantaneous
distributions of Vf obtained from the 15 individual snapshots.
We compute the correlation coefficient for all particles, and
for only particles with the highest (top 10%) modulus. The
resulting correlation coefficients as a function of time are
shown in Fig. 2(c). Interestingly, the average of all particles
does not show any significant correlation, while the selected
high-modulus particles show a significant negative correlation,
in agreement with the expected reciprocal relation between
the modulus and free volume. These results suggest indeed
a weak link between the heterogeneous modulus and the
heterogeneous amorphous structure.

B. Strain evolution in the indented glass

After elucidating the properties of the quiescent amorphous
film, we probe its incipient deformation by indentation.
We indent the glass using a sewing needle that we push
slowly into the amorphous sediment. The indentation speed
of 2.9 μm/h is sufficiently slow so that thermally activated
rearrangements can occur. We estimate from the approximate
conversion from indentation rate to uniaxial strain rate [4]
that the corresponding strain rate of our experiment is �3 ×
10−5 s−1 [28], of the order of the inverse structural relaxation
time of the glass; thus, deformation is assisted by thermal
activation. We image individual particles in a 66 μm ×
66 μm × 45 μm volume below the tip and follow their
motion in three dimensions using confocal microscopy. Again,
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FIG. 3. (Color online) Strain evolution during indentation. Re-
constructions of the normal strain εzz (a)–(c), and the maximum
shear strain εmax (d)–(f) after 4, 13, and 21 min of indentation. The
panels show 5 μm thick horizontal sections, 9 μm below the surface.
Concentric dotted circles indicate distances of r = 10, 25 and 40 μm
to the center. White arrows in (c) and (f) indicate corresponding
regions of compression and high shear strain. (g) Reconstructions of
εmax at t = 21 min in a 5 μm thick vertical section at x = 0 μm. (h)
Angle-averaged maximum shear strain as a function of radial distance
from the center.

we determine the local strain from the motion of particles
with respect to their nearest neighbors. Reconstructions of the
normal strain component εzz are shown in Figs. 3(a)–3(c). The
increasing indentation pressure is clearly visible as emerg-
ing negative (compressive) normal strain below the needle.
We also determine the maximum shear strain defined by
εmax = |ε1–ε2|/2, where ε1 and ε2 are the largest and smallest
eigenvectors of the strain tensor. The maximum shear strain
is an invariant of the strain tensor; it reflects the shear strain
acting along the principal axes of the strain tensor and provides
a good measure of the local shear deformation in amorphous
materials [30]. Its evolution is shown in Figs. 3(d)–3(f). Yellow
and orange particles indicate zones of high local εmax; with
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progressing indentation, these accumulate below the needle
as expected. The position of the maximum of εmax is also
in agreement with continuum elasticity that predicts that the
maximum occurs at a distance hmax of about half the contact
radius below the specimen surface [30–32]. To show this,
we determine the contact radius rc = 22 μm at t = 21 min
directly from the three-dimensional images and indicate hmax

in a vertical slice through the indented glass in Fig. 3(g). The
height of the strain maximum is indeed in good agreement
with the height predicted by continuum elasticity, while its
lateral position is somewhat off center. We further notice that
in addition to the central maximum, high strain persists even
further away. In fact, a closer look at Figs. 3(d)–3(f) shows
an interesting structure of deformation with high-strain zones
forming at specific distances to the center (concentric dotted
circles) [28]. This becomes most obvious when we plot the
angle-averaged strain as a function of distance from the center
as shown in Fig. 3(h). This structure contrasts with the smooth,
symmetric strain distribution of elastic deformation [30–32],
and indicates the emerging plastic flow [28]. We note that
this structure of deformation is different from the sharp slip
events typically observed in the indentation of metallic glasses
[3,4,7]: The low strain rates applied here address the regime of
homogeneous deformation, while most indentation on metallic
glass has addressed the inhomogeneous regime [4]. The low
strain rate and long time scale of the colloidal glass studied
here allow us to investigate the generic mechanism of the onset
of homogeneous deformation.

To investigate the strain distribution at the onset of plastic
flow, we focus on the early stages of the indentation and use
spatial correlation functions to measure the coherence and
range of typical strain fluctuations. We define [21]

Cε(�r) = 〈ε(r)(r + �r)〉 − 〈ε(r)〉2

〈ε(r)2〉 − 〈ε(r)〉2
, (2)

which correlates strain at locations separated by �r . Such
spatial correlation functions are used in second-order transi-
tions to measure the increasing susceptibility of the material
to external fields. We apply this formalism here to elucidate
the mechanical susceptibility of the glass under the applied
deformation. Indeed, this analysis reveals an interesting behav-
ior of the incipient microscopic strain as shown in Fig. 4(a):

At the early stages of indentation, the correlation function
appears to acquire a power-law distribution (dotted red line),
indicating long-range correlations and a high susceptibility
of the glass to the applied (mechanical) field. At this early
stage, the applied pressure is merely strong enough to induce
the first (highly correlated) rearrangements. At later stages
of indentation (upper curves) the strain correlations become
dominated by the strong strain in the center, leading to higher
correlations, but faster decay. Similarly, in the quiescent
glass, strain correlations decay quickly, without power-law
signature. This is because the motion of particles is restricted
by nearest-neighbor cages leading to localized fluctuations
only. On the other hand, at later stages of indentation, the
strong pressure in the center allows rearrangements to occur
independently of each other. In between, where the applied
pressure is just sufficient to trigger rearrangements, these
occur cooperatively, resulting in long-range correlations. We
note, however, that this is merely a trend suggested by the
data; larger system sizes, i.e., larger length-scale range as
well as larger dynamic range of Cε are needed to reach a
strong conclusion about a power law. To further substantiate
this interpretation, we investigate probability distributions
of strain both inside and outside the central high-pressure
zone. The corresponding probability distributions are shown
in Fig. 4(b). Two characteristically different distributions are
observed: particles in the center exhibit a Gaussian distribu-
tion, indicating deformation is localized and uncorrelated. In
contrast, particles outside the center exhibit a power-law strain
distribution, indicating strongly correlated deformation. This
confirms our interpretation that in the central high-pressure
zone, rearrangements occur independently of each other, while
under the smaller shear stress outside the center deformation
occurs in a correlated manner. At the same time, the glass
structure remains essentially robust. To illustrate this, we plot
the pair correlation function and free volume distribution of
particles inside and outside the center in Fig. 5, where we also
include distributions of the quiescent glass before indentation.
No significant difference is visible in g(r), while a small
difference occurs in the free volume distribution, indicating
a potentially interesting effect of the applied deformation.

In this context it is interesting to investigate coupling
between the structure and the emerging strain. For example,
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FIG. 4. (Color online) Strain correlations and distribution function. (a) Spatial correlation of the fluctuations of the maximum shear strain
for the quiescent glass (stars), and after 4 (circles), 8 (triangles), 13 (squares), 17 (diamonds), and 21 min (crosses) of indentation. The red
dotted line indicates power-law correlations at early stages of indentation. Black dashed lines are guides to the eye. (b) Relative frequency of
strain values as a function of strain magnitude for particles inside (squares) and outside the central high-strain zone (circles). Dashed lines
indicate Gaussian (left) and power-law fit (right).
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FIG. 5. Structure of the indented glass. Pair correlation function (a) and distribution of free volume (b) for particles inside (black line and
dots) and outside the high-pressure zone (gray line and dots), as well as in the quiescent glass before indentation (black dotted line and crosses).

the inhomogeneous elastic modulus could bias the emerging
strain to occur in structurally weak regions. We therefore
investigate correlations between soft regions and those of
strong deformation. To give a visual impression of this
relation, we show a contour plot of the local modulus with
overlayed high-strain particles in Fig. 6. Indeed, high-strain
particles show some tendency to occur in or close to soft
regions, in agreement with earlier work [24,25]. We determine
this relationship quantitatively by calculating the correlation
coefficient

Cμ,εmax =
∑

i(μi − 〈μ〉)(εmax,i − 〈εmax〉)√∑
i(μi − 〈μ〉)2

∑
N (εmax,i − 〈εmax〉)2

, (3)

which correlates fluctuations of the particles’ local modulus
with fluctuations of the indentation-induced strain. We evalu-
ate Eq. (3) as a function of time by using the time-dependent
shear strain εmax, and the average distribution of μ to compute
correlations for all particles, and for only the particles with
high εmax (top 10%). The resulting correlation coefficients
are shown in Fig. 6(b). A significant negative correlation is
observed, indicating that larger strain occurs preferentially
at locations with smaller local modulus and vice versa, as

expected. This correlation is strongest for high-strain particles,
indicating a clear preference for them to occur in regions
of low local modulus. We thus confirm that rearrangements
tend to occur in weak regions. Hence, while the overall strain
evolution is governed by strong strain correlations, it is biased
towards structurally weak regions, i.e., regions with a low local
modulus.

Again, it is interesting to investigate whether this structural
bias extends directly to properties of the static structure. A
number of theories [26,27] suggest a correlation between
local rearrangements and structural parameters such as the
free volume: a larger amount of free volume makes a region
rearrange more easily and thus makes it more susceptible to
deformation. This connection is already suggested by Fig. 2,
but it is not clear whether this correlation persists during the
initial stages of deformation. To investigate this relationship,
we again provide a visual impression by overlaying high-strain
particles onto a contour map of the free volume in Fig. 7.
This plot suggests maybe a weak preference for high-strain
particles to appear in regions of high free volume. To test
this relation quantitatively, we define a correlation coefficient
similar to Eq. (3), however with μ replaced by Vf . The
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FIG. 6. Correlation: local modulus, shear strain. (a) High-strain particles (εmax > 0.05 after 6 min of indentation) superimposed on a contour
plot of the local shear modulus (determined before indentation). High-strain particles show a preference to occur in regions of low modulus.
(b) Correlation between local shear strain and shear modulus as a function of time for all particles (squares) and the top 10% strain particles
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resulting correlation function, CVf, εmax , is shown as a function
of time in Fig. 7(b). Gray squares indicate the correlation
coefficient for all particles, while black circles indicate the
correlation coefficient for high-strain particles only. The data
does not show a clear correlation. The weak trend towards
positive correlation is overshadowed by strong fluctuations.

The hallmark of the incipient deformation is thus the
strongly correlated strain. This strain correlation arises from
the elastic coupling between transforming regions, mediated
by their characteristic strain fields [21]. The resulting strain
evolution is complex, and can lead to interesting space-time
structures. We elucidate these structures in more detail by fol-
lowing the total elastic energy released during the indentation.
Assuming that the simple linear elastic approximation holds,

we can compute the elastic energy of the neighborhood of
a particle from its strain tensor; this should be a reasonable
approximation for strains smaller than �0.1, i.e., for most
of the particles. The approximation is less good for strain
values larger than 0.1, which correspond to the highest strain
values observed here. In the linear elastic approximation, the
total strain energy density is Etot = (1/2)μ(2εij

2 + λεkk
2) [33],

where the squared εij
2 and εkk

2 denote the sum over all
components. We replace the Lamé constant λ by 2νμ/(1 − 2ν)
with the Poisson ratio, ν = 1/3. We thus compute the elastic
energy for all particles from their time-dependent strain, and
show its evolution in Figs. 8(a)–8(f). These reconstructions
demonstrate the strong spatial and temporal heterogeneity of
the incipient deformation. Already at early times, high-strain
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FIG. 8. (Color online) Evolution of the total elastic energy. (a)–(f) Reconstructions of the total strain energy computed from all strain
components of the particles. The time series reveals the strong spatial and temporal heterogeneity of the deformation. (g) Angle-averaged strain
energy as a function of distance from the center after 4, 13, 17, and 21min of indentation. Dash-dotted vertical lines delineate distances of high
activity. (h) Total energy as a function of time at the distances indicated by dash-dotted lines in (g).
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zones span the entire field of view; these zones develop into
a fractal-like structure at later times [28], with high activity
occurring at specific distances to the center. The time evolution
is demonstrated in Figs. 8(g) and 8(h). In Fig. 8(g), we plot the
angle-averaged elastic energy as a function of radial distance
for increasing time intervals. An interesting structure emerges
with high activity concentrating at characteristic distances to
the center; these distances correspond to the dashed circles in
Fig. 3. To elucidate the time evolution of these high-activity
regions, we follow the strain as a function of time in thin
shells around these characteristic distances, see Fig. 8(h).
Distinct bursts are observed in the time evolution; sudden
jumps occur after characteristic time intervals, demonstrating
temporal intermittency and interesting space-time correlations.

IV. CONCLUSION

We have investigated the indentation of a colloidal glass by
direct real-space imaging of the microscopic strain distribu-
tion. We find that the onset of plastic deformation is dominated
by strongly correlated strain caused by the glass’s elasticity. At
the onset of permanent deformation, strain fluctuations acquire
power-law correlations, indicating a high susceptibility of the
material to the applied mechanical field. These correlations are
weakly biased by the underlying heterogeneous glass structure.

Correlation analysis suggests that there is a weak connection
between the emerging strain and the underlying heterogeneous
modulus, while direct correlations with structural measures
such as the free volume are insignificant. The observed power-
law correlations indicate that the transition from reversible
elastic to irreversible plastic deformation has signatures of
a critical point. These strain fluctuations, however, reflect a
dynamic phenomenon, the description of which should include
time as explicit variable. Our time-resolved analysis shows
that indeed intermittency occurs not only in space, but also
along the time dimension. Understanding and describing the
full spatiotemporal structure of the emerging deformation
is a central challenge for future theories of the incipient
deformation of glasses.
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