3,647 research outputs found

    Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    Get PDF
    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels

    Key results from SB8 simulant flowsheet studies

    Get PDF
    Key technically reviewed results are presented here in support of the Defense Waste Processing Facility (DWPF) acceptance of Sludge Batch 8 (SB8). This report summarizes results from simulant flowsheet studies of the DWPF Chemical Process Cell (CPC). Results include: Hydrogen generation rate for the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles of the CPC on a 6,000 gallon basis; Volume percent of nitrous oxide, N2O, produced during the SRAT cycle; Ammonium ion concentrations recovered from the SRAT and SME off-gas; and, Dried weight percent solids (insoluble, soluble, and total) measurements and density

    Transition, action and education: redirecting pragmatist philosophy of education

    Get PDF
    Recent developments in contemporary pragmatist thought have the potential to help reshape our understandings of pragmatism in philosophy of education. We first survey the development of pragmatism as founded in experience, moving through linguistic pragmatism, to a newer –actionistic approach in conduct pragmatism. Conduct pragmatism prioritizes action over both experience and discursive thought in ways that can be central to educational activity and projects. Conduct pragmatism so conceived has the potential to alter and shift how philosophers of education relate to pragmatist thought and in the second section we outline some of these potentials. We indicate the possibilities for pragmatist philosophy of education to engage with diverse bodies of thought, moving away from an insular focus on one or two philosophers, and a diversity of locations where philosophy is active and conducted

    Relaxation times for Hamiltonian systems

    Get PDF
    Usually, the relaxation times of a gas are estimated in the frame of the Boltzmann equation. In this paper, instead, we deal with the relaxation problem in the frame of the dynamical theory of Hamiltonian systems, in which the definition itself of a relaxation time is an open question. We introduce a lower bound for the relaxation time, and give a general theorem for estimating it. Then we give an application to a concrete model of an interacting gas, in which the lower bound turns out to be of the order of magnitude of the relaxation times observed in dilute gases.Comment: 26 page

    Review Of Rheology Models For Hanford Waste Blending

    Get PDF
    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 &#956;m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 &#956;m in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is gained, the use of blending models that have been validated with real waste may become useful to predict future blends; Obtain more data measurements to check the validity of unknown coefficients for a given blending equation
    • …
    corecore