14 research outputs found

    Neuregulin-1 enhances cell-cycle activity, delays cardiac fibrosis, and improves cardiac performance in rat pups with right ventricular pressure load

    Get PDF
    Objectives: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart. We propose that cardiomyocyte proliferation improves RV adaptation to pressure load (PL). We studied adaptation in response to increased RV PL and the role of increased cardiomyocyte cell cycle activity (CCA) in rat pups growing into adulthood. Methods: We induced RV PL at day of weaning in rats (3 weeks; 30-40 g) by pulmonary artery banding and followed rats into adulthood (300 g). We performed histological analyses and RNA sequencing analysis. To study the effects of increased cardiomyocyte cell cycle activity, we administered neuregulin-1 (NRG1), a growth factor involved in cardiac development. Results: PL induced an increase in CCA, with subsequent decline of CCA (sham/PL at 4 weeks: 0.14%/0.83%; P = .04 and 8 weeks: 0.00%/0.00%; P = .484) and cardiac function (cardiac index: control/PL 4 weeks: 4.41/3.29; P = .468 and 8 weeks: 3.57/1.44; P = .024). RNA sequencing analysis revealed delayed maturation and increased CCA pathways. NRG1 stimulated CCA (PL vehicle/NRG1 at 2 weeks: 0.62%/2.28%; P = .003), improved cardiac function (cardiac index control vs vehicle/NRG1 at 2 weeks: 4.21 vs 3.07/4.17; P = .009/.705) and postponed fibrosis (control vs vehicle/NRG1 at 4 weeks: 1.66 vs 4.82%/2.97%; P = .009/.078) in RV PL rats during childhood. Conclusions: RV PL during growth induces a transient CCA increase. Further CCA stimulation improves cardiac function and delays fibrosis. This proof-of-concept study shows that stimulation of CCA can improve RV adaptation to PL in the postnatal developing heart and might provide a new approach to preserve RV function in patients with congenital heart disease.</p

    Volume Load-Induced Right Ventricular Failure in Rats Is Not Associated With Myocardial Fibrosis

    Get PDF
    Background Right ventricular (RV) function and failure are key determinants of morbidity and mortality in various cardiovascular diseases. Myocardial fibrosis is regarded as a contributing factor to heart failure, but its importance in RV failure has been challenged. This study aims to assess whether myocardial fibrosis drives the transition from compensated to decompensated volume load-induced RV dysfunction. Methods Wistar rats were subjected to aorto-caval shunt (ACS, n = 23) or sham (control, n = 15) surgery, and sacrificed after 1 month, 3 months, or 6 months. Echocardiography, RV pressure-volume analysis, assessment of gene expression and cardiac histology were performed. Results At 6 months, 6/8 ACS-rats (75%) showed clinical signs of RV failure (pleural effusion, ascites and/or liver edema), whereas at 1 month and 3 months, no signs of RV failure had developed yet. Cardiac output has increased two- to threefold and biventricular dilatation occurred, while LV ejection fraction gradually decreased. At 1 month and 3 months, RV end-systolic elastance (Ees) remained unaltered, but at 6 months, RV Ees had decreased substantially. In the RV, no oxidative stress, inflammation, pro-fibrotic signaling (TGF beta 1 and pSMAD2/3), or fibrosis were present at any time point. Conclusions In the ACS rat model, long-term volume load was initially well tolerated at 1 month and 3 months, but induced overt clinical signs of end-stage RV failure at 6 months. However, no myocardial fibrosis or increased pro-fibrotic signaling had developed. These findings indicate that myocardial fibrosis is not involved in the transition from compensated to decompensated RV dysfunction in this model

    Metabolic Remodeling in the Pressure-Loaded Right Ventricle:Shifts in Glucose and Fatty Acid Metabolism-A Systematic Review and Meta-Analysis

    Get PDF
    Background-—Right ventricular (RV) failure because of chronic pressure load is an important determinant of outcome in pulmonary hypertension. Progression towards RV failure is characterized by diastolic dysfunction, fibrosis and metabolic dysregulation. Metabolic modulation has been suggested as therapeutic option, yet, metabolic dysregulation may have various faces in different experimental models and disease severity. In this systematic review and meta-analysis, we aimed to identify metabolic changes in the pressure loaded RV and formulate recommendations required to optimize translation between animal models and human disease. Methods and Results-—Medline and EMBASE were searched to identify original studies describing cardiac metabolic variables in the pressure loaded RV. We identified mostly rat-models, inducing pressure load by hypoxia, Sugen-hypoxia, monocrotaline (MCT), pulmonary artery banding (PAB) or strain (fawn hooded rats, FHR), and human studies. Meta-analysis revealed increased Hedges’ g (effect size) of the gene expression of GLUT1 and HK1 and glycolytic flux. The expression of MCAD was uniformly decreased. Mitochon

    Volume Load-Induced Right Ventricular Failure in Rats Is Not Associated With Myocardial Fibrosis

    No full text
    Background: Right ventricular (RV) function and failure are key determinants of morbidity and mortality in various cardiovascular diseases. Myocardial fibrosis is regarded as a contributing factor to heart failure, but its importance in RV failure has been challenged. This study aims to assess whether myocardial fibrosis drives the transition from compensated to decompensated volume load-induced RV dysfunction. Methods: Wistar rats were subjected to aorto-caval shunt (ACS, n = 23) or sham (control, n = 15) surgery, and sacrificed after 1 month, 3 months, or 6 months. Echocardiography, RV pressure-volume analysis, assessment of gene expression and cardiac histology were performed. Results: At 6 months, 6/8 ACS-rats (75%) showed clinical signs of RV failure (pleural effusion, ascites and/or liver edema), whereas at 1 month and 3 months, no signs of RV failure had developed yet. Cardiac output has increased two- to threefold and biventricular dilatation occurred, while LV ejection fraction gradually decreased. At 1 month and 3 months, RV end-systolic elastance (Ees) remained unaltered, but at 6 months, RV Ees had decreased substantially. In the RV, no oxidative stress, inflammation, pro-fibrotic signaling (TGFβ1 and pSMAD2/3), or fibrosis were present at any time point. Conclusions: In the ACS rat model, long-term volume load was initially well tolerated at 1 month and 3 months, but induced overt clinical signs of end-stage RV failure at 6 months. However, no myocardial fibrosis or increased pro-fibrotic signaling had developed. These findings indicate that myocardial fibrosis is not involved in the transition from compensated to decompensated RV dysfunction in this model

    Volume Load-Induced Right Ventricular Failure in Rats Is Not Associated With Myocardial Fibrosis

    No full text
    Background: Right ventricular (RV) function and failure are key determinants of morbidity and mortality in various cardiovascular diseases. Myocardial fibrosis is regarded as a contributing factor to heart failure, but its importance in RV failure has been challenged. This study aims to assess whether myocardial fibrosis drives the transition from compensated to decompensated volume load-induced RV dysfunction. Methods: Wistar rats were subjected to aorto-caval shunt (ACS, n = 23) or sham (control, n = 15) surgery, and sacrificed after 1 month, 3 months, or 6 months. Echocardiography, RV pressure-volume analysis, assessment of gene expression and cardiac histology were performed. Results: At 6 months, 6/8 ACS-rats (75%) showed clinical signs of RV failure (pleural effusion, ascites and/or liver edema), whereas at 1 month and 3 months, no signs of RV failure had developed yet. Cardiac output has increased two- to threefold and biventricular dilatation occurred, while LV ejection fraction gradually decreased. At 1 month and 3 months, RV end-systolic elastance (Ees) remained unaltered, but at 6 months, RV Ees had decreased substantially. In the RV, no oxidative stress, inflammation, pro-fibrotic signaling (TGFβ1 and pSMAD2/3), or fibrosis were present at any time point. Conclusions: In the ACS rat model, long-term volume load was initially well tolerated at 1 month and 3 months, but induced overt clinical signs of end-stage RV failure at 6 months. However, no myocardial fibrosis or increased pro-fibrotic signaling had developed. These findings indicate that myocardial fibrosis is not involved in the transition from compensated to decompensated RV dysfunction in this model

    Quantification of Biventricular Function and Morphology by Cardiac Magnetic Resonance Imaging in Mice with Pulmonary Artery Banding

    Get PDF
    Right ventricular (RV) function and failure are major determinants of outcome in acquired and congenital heart diseases, including pulmonary hypertension. Assessment of RV function and morphology is complex, partly due to the complex shape of the RV. Currently, cardiac magnetic resonance (CMR) imaging is the golden standard for noninvasive assessment of RV function and morphology. The current protocol describes CMR imaging in a mouse model of RV pressure load induced by pulmonary artery banding (PAB). PAB is performed by placing a 6-0 suture around the pulmonary artery over a 23 G needle. The PAB gradient is determined using echocardiography at 2 and 6 weeks. At 6 weeks, the right and left ventricular morphology and function is assessed by measuring both end-systolic and end-diastolic volumes and mass by ten to eleven cine slices 1 mm thick using a 9.4 T magnetic resonance imaging scanner equipped with a 1,500 mT/m gradient. Representative results show that PAB induces a significant increase in RV pressure load, with significant effects on biventricular morphology and RV function. It is also shown that at 6 weeks of RV pressure load, cardiac output is maintained. Presented here is a reproducible protocol for the quantification of biventricular morphology and function in a mouse model of RV pressure load and may serve as a method for experiments exploring determinants of RV remodeling and dysfunction

    Female rats are less prone to clinical heart failure than male rats in a juvenile rat model of right ventricular pressure load

    No full text
    Sex is increasingly emerging as determinant of right ventricular (RV) adaptation to abnormal loading conditions. It is unknown, however, whether sex-related differences already occur in childhood. Therefore, this study aimed to assess sex differences in a juvenile model of early RV pressure load by pulmonary artery banding (PAB) during transition from pre to postpuberty. Rat pups (n = 57, 3 wk old, 30–45 g) were subjected to PAB or sham surgery. Animals were euthanized either before or after puberty (4 and 8 wk postsurgery, respectively). Male PAB rats demonstrated failure to thrive already after 4 wk, whereas females did not. After 8 wk, female PAB rats showed less clinical symptoms of RV failure than male PAB rats. RV pressure-volume analysis demonstrated increased end-systolic elastance after 4 wk in females only, and a trend toward preserved end-diastolic elastance in female PAB rats compared with males (P = 0.055). Histology showed significantly less RV myocardial fibrosis in female compared with male PAB rats 8 wk after surgery. Myosin heavy chain 7-to-6 ratio switch and calcineurin signaling were less pronounced in female PAB rats compared with males. In this juvenile rat model of RV pressure load, female rats appeared to be less prone to clinical heart failure compared with males. This was driven by increased RV contractility before puberty, and better preservation of diastolic function with less RV myocardial fibrosis after puberty. These findings show that RV adaptation to increased loading differs between sexes already before the introduction of pubertal hormones

    Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction

    No full text
    Background: Right ventricular failure (RVF) due to pressure load is a major cause of death in congenital heart diseases and pulmonary hypertension. The mechanisms of RVF are unknown. We used an experimental approach based upon clinical signs of RVF to delineate functional and biological processes associated with RVF. Methods and results: Wistar rats were subjected to a pulmonary artery banding (PAB n = 12) or sham surgery (CON, n = 7). After 52 5 days, 5/12 PAB rats developed clinical symptoms of RVF (inactivity, ruffled fur, dyspnea, ascites) necessitating termination (PAR + CF). We compared these to PAR rats with RVF without clinical symptoms (PAB). PAB resulted in reduced cardiac output, RV stroke volume, TAPSE, and increased end diastolic pressure (all p <0.05 vs. CON) in all rats, but PAB + CF rats were significantly more affected than PAR, despite similar pressure load (p = ns). Pressure-volume analysis showed enhanced contractility (end systolic elastance) in PAB and PAR + CF, but diastolic function (end diastolic elastance, end diastolic pressure) deteriorated especially in PAB + CF. In PAB + CF capillary density was lower than in PAR. Gene-array analysis revealed down-regulation of both fatty acid oxidation and carbohydrate metabolism in PAB + CF. Conclusion: Chronic PAR led to different degrees of RVF, with half of the rats developing severe clinical symptoms of RVF, associated with progressive deterioration of diastolic function, hypoxia-prone myocardium, increased response to oxidative stress and suppressed myocardial metabolism. This model represents clinical RVF and allows for unraveling of mechanisms involved in the progression from RV adaptation to RV failure and the effect of intervention on these mechanisms. (C) 2014 Elsevier Ltd. All rights reserved

    Neuregulin-1 enhances cell-cycle activity, delays cardiac fibrosis, and improves cardiac performance in rat pups with right ventricular pressure load

    Get PDF
    OBJECTIVES: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart. We propose that cardiomyocyte proliferation improves RV adaptation to pressure load (PL). We studied adaptation in response to increased RV PL and the role of increased cardiomyocyte cell cycle activity (CCA) in rat pups growing into adulthood. METHODS: We induced RV PL at day of weaning in rats (3 weeks; 30-40 g) by pulmonary artery banding and followed rats into adulthood (300 g). We performed histological analyses and RNA sequencing analysis. To study the effects of increased cardiomyocyte cell cycle activity, we administered neuregulin-1 (NRG1), a growth factor involved in cardiac development. RESULTS: PL induced an increase in CCA, with subsequent decline of CCA (sham/PL at 4 weeks: 0.14%/0.83%; P = .04 and 8 weeks: 0.00%/0.00%; P = .484) and cardiac function (cardiac index: control/PL 4 weeks: 4.41/3.29; P = .468 and 8 weeks: 3.57/1.44; P = .024). RNA sequencing analysis revealed delayed maturation and increased CCA pathways. NRG1 stimulated CCA (PL vehicle/NRG1 at 2 weeks: 0.62%/2.28%; P = .003), improved cardiac function (cardiac index control vs vehicle/NRG1 at 2 weeks: 4.21 vs 3.07/4.17; P = .009/.705) and postponed fibrosis (control vs vehicle/NRG1 at 4 weeks: 1.66 vs 4.82%/2.97%; P = .009/.078) in RV PL rats during childhood. CONCLUSIONS: RV PL during growth induces a transient CCA increase. Further CCA stimulation improves cardiac function and delays fibrosis. This proof-of-concept study shows that stimulation of CCA can improve RV adaptation to PL in the postnatal developing heart and might provide a new approach to preserve RV function in patients with congenital heart disease
    corecore