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Metabolic Remodeling in the Pressure-Loaded Right Ventricle:
Shifts in Glucose and Fatty Acid Metabolism—A Systematic Review
and Meta-Analysis
Anne-Marie C. Koop, MD; Guido P. L. Bossers, MD; Mark-Jan Ploegstra, MD, PhD; Quint A. J. Hagdorn, MD; Rolf M. F. Berger, MD, PhD;
Herman H. W. Sillj�e, PhD; Beatrijs Bartelds, MD, PhD

Background-—Right ventricular (RV) failure because of chronic pressure load is an important determinant of outcome in pulmonary
hypertension. Progression towards RV failure is characterized by diastolic dysfunction, fibrosis and metabolic dysregulation.
Metabolic modulation has been suggested as therapeutic option, yet, metabolic dysregulation may have various faces in different
experimental models and disease severity. In this systematic review and meta-analysis, we aimed to identify metabolic changes in
the pressure loaded RV and formulate recommendations required to optimize translation between animal models and human
disease.

Methods and Results-—Medline and EMBASE were searched to identify original studies describing cardiac metabolic variables in
the pressure loaded RV. We identified mostly rat-models, inducing pressure load by hypoxia, Sugen-hypoxia, monocrotaline (MCT),
pulmonary artery banding (PAB) or strain (fawn hooded rats, FHR), and human studies. Meta-analysis revealed increased Hedges’ g
(effect size) of the gene expression of GLUT1 and HK1 and glycolytic flux. The expression of MCAD was uniformly decreased.
Mitochondrial respiratory capacity and fatty acid uptake varied considerably between studies, yet there was a model effect in
carbohydrate respiratory capacity in MCT-rats.

Conclusions-—This systematic review and meta-analysis on metabolic remodeling in the pressure-loaded RV showed a consistent
increase in glucose uptake and glycolysis, strongly suggest a downregulation of beta-oxidation, and showed divergent and model-
specific changes regarding fatty acid uptake and oxidative metabolism. To translate metabolic results from animal models to
human disease, more extensive characterization, including function, and uniformity in methodology and studied variables, will be
required. ( J Am Heart Assoc. 2019;8:e012086. DOI: 10.1161/JAHA.119.012086.)
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R ight ventricular (RV) function is an important predictor
for clinical outcome in a variety of cardiac diseases.1–4

In patients with pulmonary hypertension (PH), RV failure is

the main cause of death.2 Development of RV failure
because of sustained pressure load is characterized by
progressive diastolic dysfunction, changes in fibrotic content,
and metabolic remodeling.5–9 The healthy adult myocardium
primarily uses long-chain fatty acids as substrates, in
contrast to the fetal heart, which uses primarily glucose
and lactate.10–13 Under stress, the heart switches to a so-
called “fetal phenotype”, which includes a change in
substrate utilization from oxidative metabolism towards
glycolysis.12 While these changes may have advantages (ie,
better ratio of ATP production versus oxygen use), they may
also have disadvantages (eg, increase of stimulation of
inflammatory cascades via intermediaries). The RV under
pressure may be especially susceptible to changes in
substrate utilization because of its unique physiological
properties.14 The RV is a thin-walled crescent-shaped
structure that under physiological conditions is coupled to
low-resistance pulmonary circulation. Increased pressure
load in the RV, prevalent in PH, congenital heart disease,
and also in left ventricle (LV) failure, causes a relatively high

From the Department of Pediatric Cardiology, University Medical Center
Groningen, Center for Congenital Heart Diseases, University of Groningen, The
Netherlands (A.-M.C.K., G.P.L.B., M.J.P., Q.A.J.H., R.M.F.B., B.B.); Department
of Cardiology, University Medical Center Groningen, University of Groningen,
The Netherlands (H.H.W.S.).

Accompanying Data S1, Tables S1 through S5, Figures S1 through S4 are
available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.
012086

Beatrijs Bartelds is currently located at the Division of Pediatric Cardiology,
Department of Pediatrics, Erasmus University Medical Center, Sophia
Children’s Hospital, Rotterdam, The Netherlands.

Correspondence to: Anne-Marie C. Koop, MD, Hanzeplein 1, CA41, Postbus
30.001, 9700 RB Groningen. E-mail: a.c.koop@umcg.nl

Received February 9, 2019; accepted September 4, 2019.

ª 2019 The Authors. Published on behalf of the American Heart Association,
Inc., by Wiley. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs License, which permits use
and distribution in any medium, provided the original work is properly cited,
the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1161/JAHA.119.012086 Journal of the American Heart Association 1

SYSTEMATIC REVIEW AND META-ANALYSIS

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 17, 2019

info:doi/10.1161/JAHA.119.012086
https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.012086
https://www.ahajournals.org/doi/suppl/10.1161/JAHA.119.012086
mailto:a.c.koop@umcg.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


load for the RV. In addition, the RV may be more susceptible
compared with the LV because of the relatively higher
disadvantageous changes in coronary perfusion with
increased afterload. Several studies have attempted to
improve RV adaptation by metabolic modulation. Metabolic
intervention tested whether direct or indirect stimulation of
glucose oxidation by compounds such as dichloroacetate,
ranolazine, trimetazidine, and 6-diazo-5-oxo-L-norleucine,
could be supportive in the pressure-loaded RV.15–21 Indeed,
these modulations seem to affect cardiac performance
positively, but because of the limited number of studies,
different models, different compounds, and different study
parameters, consensus has not been reached, complicating
translation to clinical practice.22,23 To support the validated
setup of clinical trials and to identify challenges and
opportunities in evaluating metabolic findings in animal
models for human disease, a comprehensive appreciation of
all evidence collected in previous studies addressing
metabolic adaptation of the RV to pressure load is
necessary. The aim of this systematic review and meta-
analysis is to provide an overview of the current knowledge
about metabolic remodeling, focusing on carbohydrate and
fatty acid metabolism in the pressure-loaded RV. Both
experimental and clinical studies were included, taking into
account the different models or type of disease, and the
degree and duration of RV pressure load, and RV- and
clinical function. In addition, we present an overview of the
studies performed regarding interventions affecting metabo-
lism in the RV under pressure.

Materials and Methods
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Literature Search
We performed a systematic literature search in Medline and
EMBASE onNovember 29, 2017. The search strategy and global
methodological approach using Systematic Review Protocol for
Animal Studies, version 2.0 formatted by SYRCLE24,25 was
published on the online platform of the working group
Collaborative Approach to Meta-Analysis and Review of Animal
Data for Experimental Studies (CAMARADES) on December 13,
2016. The search strategy was composed to capture overlap-
ping parts of the following domains: (1) RV; (2) pressure load;
and (3) metabolism (Data S1).

Study Selection
Two researchers (A.M.C.K. and G.P.L.B.) independently
screened the identified abstracts according to the following
inclusion criteria: (1) English; (2) original article; (3) RV
pressure load; (4) no reversible pressure load; (5) no mixed
loading; and (6) RV metabolism. Full texts were screened for
control group and sufficiency of the model by confirming
increased pressure load by at least (1) increased RV pressure
load (ie, RV systolic pressure or mean pulmonary artery
pressure), or (2) hypertrophy (ie, RV weight, Fulton index (RV
divided by LV+interventricular septum) or RV to body weight
ratio). For inclusion of human studies, a control group for
pressure load measurements was not required, since inclu-
sion of individuals at study level did meet the criteria of
international guidelines for pulmonary hypertension.26

Data Extraction
For the meta-analysis inclusion, the study had to report on
metabolic variables, which were investigated in at least 2 or
more other studies. Variable of metabolism was defined as (1)
mRNA expression of genes involved in substrate uptake of
metabolism; (2) protein expression and/or activity of genes
involved in substrate uptake of metabolism; or (3) metabolism
measured in vivo or in vitro using either oxygraphy in isolated
mitochondria (eg, Oroboros, Clark-type electrode), oxygraphy
in whole cells (eg, Seahorse) or in isolated hearts (eg,
Langendorf). General upstream regulators also involved in
metabolism (eg, mitogen-activated protein kinase and AKT
[protein kinase B]) were not included. In addition, study
characteristics such as species, model/type of pressure load,
and degree and duration of pressure load of selected studies
were extracted. We extracted the mean, SD (if not presented,

Clinical Perspective

What Is New?

• This is the first systematic review and meta-analysis
studying metabolic adaptation of the right ventricle in
response to pressure overload and includes studies in both
animal models and humans.

• In the pressure-loaded right ventricle, glucose uptake and
glycolysis were shown to be increased, mediated by insulin-
independent mechanisms irrespective of the model used.

• In contrast, changes in mitochondrial respiratory capacity
were variable and depended on the animal model used.

What Are the Clinical Implications?

• This study implies that in developing and testing future
therapeutic options targeting metabolism of the pressure-
loaded right ventricle, one should account for causative
factors.

• To establish actual translation from experimental models to
human disease, experimental methods and outcome param-
eters should be standardized and uniform.
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SE), and number of subjects (n) of the selected variables from
all eligible studies. Universal Desktop Ruler (Avpsoft) was
used to derive data from graphs. In case of missing
information, authors were contacted. If response was lacking,
we approached the data as follows: when the SD was
unknown, the SD was calculated when mean difference,
(corrected) P value, and number of used subjects were
available; in case of unknown SD of the control groups, we
used the SD of the experimental group; if the exact n was
unknown, the greatest number given was used for the
calculation of the SD.

Data Synthesis
Effect sizes, defined as Hedges’ g, with associated CI of 95%
were calculated, after which multiple separate random effects
meta-analyses were performed using STATA 11. When the
actual number of animals (n) used for a certain variable was
unknown (ie, not reported in the manuscript and not acquired
after contacting the author), the smallest n mentioned by the
authors was used to calculate the Hedges’ g. Combined effect
sizes of a particular variable were calculated for (1) the
different models (shown by the gray squares) and (2) all
studies describing the variable (shown by the black squares).
Heterogeneity was assessed using Cochran’s Q-test and the i2

quantity. In order to explore the sources of heterogeneity,
meta-regression analyses were performed for duration and
degree of pressure load if information was available for more
than 2 groups. To perform meta-regression analysis of a
variable with duration, actual duration of pressure load had to
be given (ie, variables were excluded from meta-regression
analysis if corresponding duration was defined as a time-
interval [eg, 2–6 weeks]). To be included for meta-regression
analyses concerning the degree of pressure load, RV loading
had to be measured as actual pressure rather than increase in
hypertrophy. Unfortunately, meta-regression of cardiac or RV
function was impossible because of lack of available data. In
addition, differences between models were tested with
unpaired t test or 1-way analysis of variance with post-hoc
Tukey’s correction.

Since they have different functions in biological processes,
gene expression (at mRNA level) and protein expression of
studied variables were separately included in the meta-
analysis. In some studies, mitochondrial content was tested
by different measurement techniques within the same
animals. To avoid overrepresentation of included subjects,
the results of only 1 (the superior) technique/definition was
included for meta-analysis. We ranked the different definitions
of mitochondrial content (which were used in the same
animals) as follows: (1) ratio mitochondria to myofibrils, (2)
mitochondrial yield, (3) citrate synthase activity, (4) citrate
synthase at mRNA level, and (5) whole tissue citrate synthase

activity. However, all results (from all different techniques) are
visually shown in the figures.

If the study concerned did not provide the exact number of
animals used for the test of a particular variable, the mean of
the range of the number of animals reported in the concerning
study was presented in our figures.

The number of included animals per model provided in the
current figures may give a slight overestimation in case of
multiple groups using the same control group.

Results

Identified Studies
In total, 1393 unique citations were identified, as shown in
Figure 1. Based on title abstract screening, 1282 citations
were excluded. Of the 111 articles selected for full text
review, 86 articles concerned animal studies and 28 articles
concerned human studies, and 3 articles described both
(Table S1). After full text review, 35 studies were excluded
because no control group for the metabolic variables was
included (n=22), no increase in RV pressure was measured
(n=11), or full text was not available (n=2). The former
involved mostly the human studies. We included 28 studies
for meta-analysis (Table S1); 2 of the studies described both
human and animal data (Piao, 201316 and Gomez-Arroyo,
201327).

From 3 selected publications, 3 study groups were
excluded (Balestra 2015, MCT3028; Rumsey 1999, 1 day29;
and Zhang 2014, 2 weeks30), since pressure load and
hypertrophy did not increase significantly or was not reported.
All other groups had at least increased RV systolic pressure
(Figure S1A), RV weight, Fulton index (Figure S1B), or RV/
body weight ratio.

Glucose Transport and Glycolysis
We identified 3 variables of glucose transport that were
described in 3 or more studies: fluorodeoxyglucose (FDG)
uptake and expression of transporters GLUT1 and 4 (Fig-
ure 2). The uptake of the glucose-analogue FDG was
uniformly increased in animal models19,31,32 as well as in
patients with PH33 (Figure 2A). Numerous studies investi-
gated the expression of the major glucose transporters,
GLUT1 and GLUT4, and correlated this with FDG uptake. Our
meta-analysis revealed that GLUT1 mRNA as well as protein
level were significantly increased in the pressure-loaded RV
(Figure 2B). The increase in GLUT1 mRNA expression was
universal in all models,15,18,21,27,34–37 but protein levels were
higher in the monocrotaline (MCT) model15 as compared with
the hypoxia, pulmonary artery banding (PAB), and fawn
hooded rat (FHR) models15,16,21 (P<0.05 for all groups). In
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contrast to GLUT1, the gene expression of GLUT434–36 and
the GLUT4 proteins levels19,36,38–40 were not altered (Fig-
ure 2C). Meta-regression analyses for FDG-uptake, GLUT1
and GLUT4, revealed no statistical significant correlations
with duration or degree of RV pressure load (Table S2). Meta-
regression of GLUT1 at protein level and GLUT4 at gene level
with degree of RV pressure load is not performed because of
missing pressure measurements in the studies concerned.

Glucose transport is coupled with glucose–phosphorylation
by hexokinases, driving glucose into glycolysis. The mRNA
expression of HK1 (Figure 3A) was significantly increased in all
models.18,21,27,29,30 In addition,meta-regression analysis showed
a negative trend with the duration of RV pressure load (P=0.08)
(Figure 3B). HK2 expression was not altered15,16,21,27,29,30,37

(Figure 3C) and meta-regression analysis revealed no correla-
tions with duration of degree of pressure load (Tables S2 and
S3). Unfortunately, protein levels of HK1 were only determined
in 1 study18 and HK2 protein levels were not determined at all,
and therefore it is unclear how HK protein levels are affected by

pressure overload. Glycolysis was studied on isolated hearts in
a Langendorf perfusion system of 3 RV pressure overload
models: MCT,15 PAB,21 and FHR.16 In addition, glycolysis was
determined by Seahorse in RV preparations of the FHR
model.16 Meta-analysis of the data revealed that glycolysis
was significantly increased in cardiac tissue of these RV
pressure-loaded hearts (Figure 3D).

Transport of Fatty Acids
Transporter cluster differentiation 36 (CD36), the main
transporter of fatty acids across the plasma membrane, was
only investigated in 3 studies (either RNA or protein)27,37,41

and hence did not meet the criteria for meta-analysis.
Transport of fatty acids over the mitochondrial membrane is
highly regulated by carnitine palmitoyltransferases (CPT1 and
CPT2) (outer and inner membrane, respectively). Only meta-
analysis of subunit CPT1B was possible, but revealed
ambiguous and nonsignificant results16,27,34,37 (Figure 4A).

757 MEDLINE 1383 EMBASE

1393 unique 
articles

42  not English
695 not original article
66 no right ventricular pressure load
14 reversible pressure load
16 volume load or mixed loading
449 no right ventricular metabolism 111 full text

three studies 
describe both86 ANIMAL 28 HUMAN

73 ANIMAL 6 HUMAN

2 full text not available
0 no control group
11 no increased pressure 
load or hypertrophy

22 no control group for 
metabolic parameter

three studies 
describes both

studies for quantification of metabolic parameters

26 ANIMAL 4 HUMAN

included studies for meta-analysis
(describing ≥ 1 parameter(s) in ≥ 3 studies)

two studies 
describes both

Figure 1. Flow chart of systematic study selection and inclusion meta-analysis.
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GLUT1 - mRNAB-1
Study

Hypoxia models
Adrogue 2005, rat, 4 weeks  (n=10) 34

Adrogue 2005, rat, 10 weeks  (n=10) 34

Adrogue 2005, rat, 12 weeks  (n=10) 34

Sharma 2003, rat, 2 days (n=10) 35

Sharma 2003, rat, 7 days (n=10) 35

Sharma 2003, rat, 14 days (n=10) 35

Sivitz 1992, rat, 2 days (n=10) 36

Sivitz 1992, rat, 14 days (n=12) 36

COMBINED (n=82): p = 0.028, I²= 81.2%

SuHx models
Gomez-Arroyo 2012, rat, 6 weeks , TAPSE ↓ (n=12) 27; p < 0.01

MCT models
Piao 2010, MCT60, rat, 1 month, CO ↓ (n=12) 15

Piao 2013, MCT60, rat, 4 weeks, CO ↓,  TMD ↓ (n=14)18

Piao 2013, MCT60, rat, 4 weeks, CO ↓,  TMD ↓ (n=14) 18 X

COMBINED (n=26): p < 0.001, I²= 0..0%

PAB models
Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12) 27

Fang 2012, rat, 4 weeks, CI ↓, TMD ↓ (n=10) 28

Fang 2012, rat, 8 weeks, CI ↓, TMD ↓ (n=10) 28

Piao 2013, rat, 4 weeks (n=13) 18

COMBINED (n=45): p = 0.003, I²= 66.3%

Diseases of PH in human
van der Bruggen 2016, non BMPR2 (n=17) 37

van der Bruggen 2016, BMPR2 (n=11) 37

COMBINED (n=28): p = 0.004, I²= 0.0%

COMBINED (n=193): p = 0.002, I²= 71.9%

Hedges' g (95% CI)

0.94 (-0.25- 2.14)

6.52 (3.45- 9.58)

0.00 (-1.12- 1.12)

1.94 (0.54- 3.35)

-0.9 (-2.09- 0.29)

-0.33 (-1.46- 0.8)

2.30 (0.79- 3.8)

2.16 (0.8- 3.51)

1.24 (0.13- 2.36)

1.79 (0.3- 3.28)

1.99 (0.68- 3.31)

2.22 (0.93- 3.51)

1.79 (0.6- 2.98)

1.99 (1.26- 2.72)

0.30 (-0.91- 1.52)

3.42 (1.53- 5.3)

2.06 (0.6- 3.51)

1.00 (0.81- 3.4)

1.86 (0.62- 3.09)

0.58 (-0.39- 1.54)

1.09 (-0.09- 2.27)

0.78 (0.04- 1.53)

1.42 (0.81- 2.03)

- 5 50

Study

Hypoxia models
Sivitz 1992, rat, 14 days (n=12);  p < 0.0136

MCT models*
Piao 2010, rat, 1 month, CO ↓ (n=8) ; p < 0.05 15

PAB models
Fang 2012, rat, 4 weeks, CI ↓, TMD ↓ (n=10) 21

Fang 2012, rat, 8 weeks, CI ↓, TMD ↓ (n=10) 21

COMBINED, (n=20): p = 0.032, I²= 0.0%

FHR models
Piao 2013, rat, 6-12 months, CO ↓ , TAPSE ↓ (n=7); p = ns 36

COMBINED, (n=40): p =0.009, I²= 72.6%

Hedges' g (95% CI)

2.24 (0.86- 3.61)

12.18 (6.09- 18.27)

1.01 (-0.22- 2.23)

0.87 (-0.33- 2.08)

0.94 (0.08- 1.8)

1.32 (-0.16- 2.81)

2.017 (0.86- 3.174)

GLUT1 - proteinB-2

0- 5 1 0

Study

SuHx models
Graham 2015,  rat, 7 weeks (n=10)  31

Drozd 2016,  rat, 5 weeks (n=13)  19

Drozd 2016,  rat, 8 weeks (n=12), RVEF ↓ 19

COMBINED (n=35): p = 0.000, I²= 0.0%

MCT models
Sutendra 2013,  rat, 2-6 weeks, CO =, compensated (n=10)  32

Sutendra 2013,  rat, 2-6 weeks, CO ↓, decompensated (n=10) 32

Piao 2010, rat, 1 month, CO ↓ (n=16) 37

COMBINED (n=36): p = 0.002, I²= 75.8%

Diseases of PH in human
Wang 2016, iPAH (n=48) 33

COMBINED (n=119): p < 0.001, I²= 52.1%

Hedges' g (95% CI)

1.41 (0.02- 2.80)

1.42 (0.20- 2.65)

1.63 (0.35- 2.92)

1.49 (0.74- 2.24)

6.43 (3.4- 9.46)

3.05 (1.30- 4.79)

1.81 (0.69- 2.94)

3.36 (1.20- 5.51)

1.48 (0.84- 2.11)

1.93 (1.23- 2.62)

FDG-uptakeA

Study

Hypoxia models
Adrogue 2005, rat, 4 weeks (n=10) 34

Adrogue 2005, rat, 10 weeks (n=10) 34

Adrogue 2005, rat, 12 weeks (n=10) 34

Sharma 2003, rat, 2 days (n=10) 35

Sharma 2003, rat, 7 days (n=10) 35

Sharma 2003, rat, 14 days (n=10) 35

Sivitz 1992, rat, 2 days (n=11) 36

Sivitz 1992, rat, 14 days (n=14) 36

COMBINED (n=85): p = 0.059, I²= 88.8%

COMBINED (n=85): p = 0.059, I²= 88.8%

Hedges' g (95% CI)

1.54 (0.23- 2.85)

-5.44 (-8.07- -2.81)

-68.87 (-99.07- -38.67)

-0.86 (-2.04- 0.32)

0.36 (-0.77- 1.49)

-2.09 (-3.54- -0.64)

-4.98 (-7.44- -2.53)

-0.2 (-1.25- 0.85)

-1.66 (-3.27- 0.06)

-1.66 (-3.27- 0.06)

GLUT4 - mRNAC-1

Study

Hypoxia models
Sivitz 1992, rat, 2 days (n=11) 36

Sivitz 1992, rat, 14 days (n=14) 36

Bruns 2014, calve, unknown, CO = (n=20) 38

COMBINED (n=45): p = 0.299, I²= 86.1%

SuHx models
Drozd 2016, rat, 5 weeks (n=6) 19

Drozd 2016, rat, 8 weeks, RVEF ↓ (n=9) 19

COMBINED (n=15): p = 0.129, I²= 69%

MCT models
Paulin 2015, rat, 3-4 weeks, CO =, compensated (n=10) 39

Paulin 2015, rat, 5-6 weeks, CO ↓, decompensated (n=10) 39

Paulin 2015, rat, 3-4 weeks , CO =, compensated early (n=6) 39

Paulin 2015, rat, 3-4 weeks, CO =, compensated late (n=6) 39

Paulin 2015, rat,  5-6 weeks, CO ↓, decompensate (n=6) 39

Broderick 2008, rat, 46 days (n=10) 40

COMBINED (n=48): p = 0.309, I²= 60%

COMBINED (n=108): p = 0.482, I²= 73.4%

Hedges' g (95% CI)

-3.47 (-5.2- -1.73)

-0.05 (-1.09- 1)

0.2 (-0.65- 1.04)

-0.09 (-2.72- 0.84)

3.02 (0.89- 5.16)

0.74 (-0.54- 2.02)

1.71 (-0.5- 3.92)

1.16 (-0.07- 2.39)

-1.1 (-2.32- 0.12)

0.77 (-0.59- 2.12)

2.37 (0.51- 4.22)

0.06 (-1.22- 1.34)

0.05 (-1.07- 1.17)

0.44 (-4.08- 1.29)

0.27 (-0.48- 1.02)

GLUT4 - proteinC-2

0- 5 5

- 6 5 - 5
0

50

0-5 5

Figure 2. Right ventricular uptake of carbohydrates. Forrest plots of FDG-uptake (A), GLUT1 expression at mRNA (B-1) and protein
(B-2) level, and GLUT4 expression at mRNA (C-1) and protein (C-2) level. Data are presented as Hedges’ g. Combined Hedges’ g are
presented as squares: gray representing Hedges’ g of a specific model, black representing Hedges’ g of all included studies. Bars
represent 95% CI. = indicates not statistically significant affected; ↓, decreased; CI, cardiac index; CO, cardiac output; FDG uptake,
fluorodeoxyglucose uptake; GLUT, glucose transporter; i2, level of heterogeneity; MCT, monocrotaline; n, number of included animals;
RVEF, right ventricular ejection fraction; TAPSE, tricuspid annular plane systolic movement; X, not included in meta-analysis. *Significantly
(P<0.05) increased compared with hypoxia, pulmonary artery banding- and fawn hooded rats-models.
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However, CPT1B mRNA negatively correlated with duration of
pressure overload (Figure 4B).

Mitochondrial Function
Mitochondrial content

Mitochondrial content was studied using different assays and
was subsequently expressed as the following: the ratio of
mitochondrial DNA – nuclear (18S) DNA, the ratio of the
number of mitochondria to myofibrils, mitochondrial yield (mg

mitochondrial protein per gram RV), and citrate synthase
activity or citrate synthase mRNA expression. Combining all
the data from different models27,28,42–45 and including all
analyses, a significant decrease of mitochondrial content in
the pressure-loaded RV could be demonstrated (g=�0.60,
P=0.016). However, several studies used data from the same
experiment. After exclusion of the possible duplicate mea-
surements (choosing most optimal determination, ranked
according to order above), mitochondrial content tended to
decrease, but lost its statistical significance (g=�0.68,

glycolysisD
Study

MCT models
Piao 2010, rat, 1 month, CO ↓, Langendorf  (n=10) , p < 0.05 15

PAB models
Fang 2012, rat, 8 weeks, CI ↓, TMD ↓, Langendorf  (n=6); p < 0.05 21

FHR models
Piao 2013, rat, 10-20 months, CO ↓ , TAPSE ↓, Langendorf  (n=11) 16

Piao 2013, rat, 10-20 months, CO ↓ , TAPSE ↓, Seahorse  (n=14) 16

COMBINED (n=25):  p= 0.001, I²= 0.0%

COMBINED (n=41): p < 0.001, I²= 0.0%

Hedges' g (95% CI)

1.48 (0.19-2.77)

1.05 (-0.12-2.22)

1.16 (-0.06-2.39)

1.7 (0.53-2.88)

1.44 (0.59-2.29)

1.35 (0.74-1.95)

0 1 .8

HK1 - mRNAA
Study

Hypoxia models
Rumsey 1999, rat, 21 days (n=7); level of sign. unknown 29

SuHx models
Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12); p < 0.0127

MCT models
Piao 2013, rat, 4 weeks, CO ↓, TMD ↓ (n=14) 18

Piao 2013, rat, 4 weeks, CO ↓ , TMD ↓ (n=14) 18 x

Zhang 2014, rat, 3 weeks (n=24) 30

Zhang 2014, rat, 4 weeks (n=24) 30

COMBINED (n=100): p = 0.001, I²= 96.4%

PAB models
Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12) 27

Fang 2012, rat, 4 weeks, CI ↓, TMD ↓ (n=10) 21

Fang 2012, rat, 8 weeks, CI ↓, TMD ↓ (n=10) 21

Piao 2013, rat, 4 weeks (n=13) 18

COMBINED (n=45): p < 0.001, I²= 33.2%

COMBINED (n=164): p < 0.001, I²= 92.2%

Hedges' g (95% CI)

19.42 (5.92- 32.92)

2.1 (0.52- 3.69)

2.5 (1.14- 3.85)

1.56 (0.41- 2.7)

22.19 (15.87- 28.52)

14.63 (10.42- 18.83)

6.4 (2.69- 10.11)

1.32 (-0.05- 2.69)

3.95 (1.88- 6.03)

1.73 (0.36- 3.1)

2.03 (0.75- 3.31)

2.04 (1.14- 2.94)

3.88 (2.1- 5.65)

5- 0 5
2 0

2 0

Study

Hypoxia models
Rumsey 1999, 21 days (n=7); level of sign. unknown 29

SuHx models
Gomez-Arroyo 2012, 6 weeks, TAPSE ↓ (n=12); p < 0.01 27

MCT models
Zhang 2014, 2 weeks (n=24) 30

Zhang 2014, 3 weeks (n=24) 30

Zhang 2014, 4 weeks (n=24) 30

Piao 2013, 4 weeks, CO ↓,  TMD ↓ (n=14) 18

COMBINED (n=86): p = 0.803, I²= 83.2%

PAB models
Gomez-Arroyo 2012, 6 weeks, TAPSE ↓ (n=12) 27

Fang 2012, 4 weeks, CI ↓, TMD ↓ (n=10) 21

Fang 2012, 8 weeks, CI ↓, TMD ↓ (n=10) 21

Piao 2013, 4 weeks (n=13) 18

COMBINED (n=45):  0.885, I²= 0.0%

FHR models
Piao 2013, 10-20 months, CO ↓ , TAPSE ↓ (n=9); p < 0.00116

Diseases of PH in human
Van der Bruggen 2016, PAH, non BMPR2 (n=17) 37

Van der Bruggen 2017, PAH, BMPR2 (n=11) 37

COMBINED (n=28): p = 0.105, I²= 73.3%

COMBINED (n=187): p = 0.714, I²= 77.0%

Hedges' g (95% CI)

30.7 (9.4-52.01)

0.89 (-0.39-2.17)

-0.99 (-1.81--0.17)

-0.51 (-1.29-0.28)

0.36 (-0.42-1.14)

1.99 (0.75-3.22)

0.14 (-0.94-1.21)

-0.77 (-2.04-0.49)

0.45 (-0.71-1.61)

0.07 (-1.08-1.21)

0.23 (-0.78-1.25)

0.04 (-0.53-0.61)

-8.45 (-12.53--4.38)

1.47 (0.22-2.71)

0.4 (-0.56-1.35)

0.86 (-0.18-1.9)

0.13 (-0.55-0.81)

HK2 - mRNAC

55- 0 3 0

B HK1 (mRNA) versus duration of RV pressure load

Figure 3. Glycolysis. Forrest plot of HK1 (A) and bubble plot showing meta-regression analysis of HK1 expression at mRNA level with the
duration of RV pressure load (B). Forrest plots of HK2 (C) expression at mRNA level and glycolytic flux measured with Seahorse or Langendorf
(D). Data are presented as Hedges’ g. Combined Hedges’ g are presented as squares: gray representing Hedges’ g of a specific model, black
representing Hedges’ g of all included studies. Bars represent 95% CI. Bubble size represents relative study precision, calculation based on SD.
Black line represents regression line, gray lines represents 95% CI. = indicates not statistically significantly affected; ↓, decreased; 95% CI,
cardiac index; CO, cardiac output; FHR, fawn hooded rats; HK, hexokinase; i2, level of heterogeneity; MCT, ; n, number of included animals; PAB,
pulmonary artery banding; PH, pulmonary hypertension; RVEF, right ventricular ejection fraction; TAPSE, tricuspid annular plane systolic
movement; X, not included in meta-analysis.
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P=0.054) (Figure 5A). Plotting duration against mitochondrial
content suggests a curvilinear association, with a significant
negative correlation in the first 6 weeks (Figure 5B). In
addition, mitochondrial content is negatively correlated with
the degree of RV pressure load (Figure S4).

Glucose oxidation

Activity of pyruvate dehydrogenase (PDH), the enzyme convert-
ing pyruvate into acetyl-CoA in the mitochondria, tended to be
decreased in RV pressure load but did not reach statistical
significance (g=�1.982, P=0.123)15,16,18,21 (Figure 5C). A
similar result was observed for PDK4, a negative regulator of
PDH, (resp. g=�1.91, P=0.110), where meta-analysis of
expression at both mRNA16,34,35 and protein level16,17,32 was
unchanged (Figure S2A, S2B). The same was true for PDK1 and
PDK2 at protein level16,17,32 (Figure S2C, S2D). Heterogeneity
was not explained by the duration or degree of pressure load
(Tables S2 and S3), or the different models.

Respiratory capacity of glucose or pyruvate was reported in
7 articles. Analysis was divided in ADP-driven respiratory state
measured in isolated mitochondria with oxygraphy (Oroboros
or Clark-type) (n=2)20,29 (Figure 5D-1), and respiratory capac-
ity measured in intact cardiomyocytes with Seahorse
(n=2)16,21 or isolated heart model (Langendorf) (n=3)15,16,18

(Figure 5D-2). Subsequently, measurements in isolated mito-
chondria did not meet the inclusion criteria for meta-analysis.
Respiratory capacity measured by all methods showed a

negative trend, albeit meta-analysis of respiratory capacity for
carbohydrates in intact cardiomyocytes did not reveal a
significant decrease (g=�1.21 P=0.082). Respiratory capacity
did increase in the MCT model compared with PAB (P<0.05)
(Figure 5D). Meta-regression analyses did not reveal correla-
tions between respiratory capacity and duration or degree of
RV pressure load.

Oxidative fatty acid metabolism

b-Oxidation involved genes including ACADVL (1), EHHADH
(2), HADHA (1), ACAA2 (3), ACAT1 (1), medium chain acyl CoA
dehydrogenase (MCAD) (synonym ACADM) (6), ACADS (3),
and ACOT2 (1) were all described, but only MCAD met the
criteria for inclusion in meta-analysis. MCAD at the mRNA
level decreased in all models of RV pressure load (hypoxia
P<0.001, SuHx P<0.01, and PAB P<0.05)5,27,34,35,46 (Fig-
ure 5E). No correlations with duration or degree of pressure
load were observed (Tables S2 and S3). At the protein level, 3
studies27,46,47 were included in the meta-analysis, which
tended to decrease, but did not reach statistical significance
(g=�2.02, P=0.141) (Figure S3).

Mitochondrial respiration regarding fatty acid oxidation
measured in the ADP-driven state (n=4) decreased, when
tested in models of hypoxia29,42 and SuHx20 (Figure 5F-1).
Respiratory capacity in intact cardiomyocytes was extracted
from 2 publications showing contrary results in PAB21

compared with the FHR model16 (Figure 5F-2).

CPT1B (mRNA) versus duration of RV pressure loadB

Study

Hypoxia models
Adrogue 2005, rat, 4 weeks (n=10) 34

Adrogue 2005, rat, 10 weeks (n=10) 34

Adrogue 2005, rat, 12 weeks (n=10) 34

COMBINED (n=30): p = 0.142, I²=95.2%

SuHx models
Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12); p = ns 27

PAB models
Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12); p = ns 27

FHR models
Piao 2013, rat, 10.-20 months, CO ↓ , TAPSE ↓ (n=9); p = ns 16

Diseases of PH in human
van der Bruggen 2016, human, PAH, non BMPR2 (n=17) 37

van der Bruggen 2016, human, PAH, BMPR2 (n=11) 37

COMBINED (n=28): p = 0.057, I²= 0.0%

COMBINED (n=91): p= 0.166, I²= 87.5%

Hedges' g (95% CI)

1.01 (-0.19-2.21)

-16.88 (-24.37--9.4)

-11.76 (-17.04--6.49)

-8.82 (-20.57-2.94)

-0.95 (-2.24-0.34)

-0.56 (-1.8-0.68)

-0.51 (-1.74-0.72)

0.52 (-0.44-1.48)

1.01 (-0.15-2.18)

0.72 (-0.02-1.46)

-0.99 (-2.38-0.41)

CTP1B - mRNAA

5- 0 5- 2 0

Figure 4. Right ventricular uptake of fatty acids. Forrest plot of CPT1B expression at mRNA level (A). Bubble plot showing the relation between
CPT1B expression at mRNA level with duration of pressure load (B). Data are presented as Hedges’ g. Combined Hedges’ g are presented as
squares: gray representing Hedges’ g of a specific model, black representing Hedges’ g of all included studies. Bars represent 95% CI. Bubble
size represents relative study precision, calculation based on SD. Black line represents regression line, gray lines represents 95% CI. = indicates
not statistically significant affected; ↓, decreased; CI, cardiac index; CO, cardiac output; CPT1B, carnitine palmitoyltransferase; FHR, fawn
hooded rats; i2, level of heterogeneity; n, number of included animals; PAB, pulmonary artery banding; PH, pulmonary hypertension; PL, pressure
load; RV, right ventricular; TAPSE, tricuspid annular plane systolic movement.
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Transcriptional Regulators of Metabolism

This systematic search identified several regulators of tran-
scriptional regulators of metabolism (ie, PGC1a (5), PPARa
(4), PPARc (1), FOXO1 (1), Mef2c (1), HIF1a (4), and cMyc (1))
(numbers include both gene expression at mRNA level and
protein expression). Meta-analysis was performed for PGC1a
and PPARa. PGC1a is best known as the master regulator of
mitochondrial biogenesis and interacts with PPARa, which
predominantly acts on lipid metabolism. Combined Hedges’ g
of PGC1a mRNA expression27,43 decreased (Figure S4B) and
meta-regression revealed a negative correlation with duration
of pressure load (Figure S4C). Meta-analysis for PGC1a
protein expression did not reveal significant change (Fig-
ure S4D), but did show a model effect for MCT43 versus
SuHx20,27 (P<0.05) (Figure S4B). Combined Hedges’ g of
PPARa mRNA expression27,34,35 during pressure load did not
change significantly (Figure S4E) and no correlations with

duration, degree, or model of RV pressure were observed.
PPARa protein expression was studied once in SuHx rats,
demonstrating a decrease (P<0.001).27

Results are summarized in Figure 6 and Table S4.

Effect of Interventions on Metabolism in the
Pressure-Loaded RV
Twenty studies described the effect of an intervention on
metabolic parameter(s). Overall, these intervention studies
aimed to decrease glycolysis by the increase of glucose
oxidation. This could be established by recoupling of glycol-
ysis with glucose oxidation, by, for example, dichloroacetate
or 6-diazo-5-oxo-L-norleucine, or indirectly by inhibition of
fatty acid metabolism by, for example, trimetazidine or
ranolazine. Seven studies included metabolic variables that
were included in meta-analyses above.15–21 Of these meta-
bolic variables, effect sizes derived from certain metabolic

mitochondrial content versus duration of RV pressure loadB

mitochondrial contentA
Study

Hypoxia models
Nouette-Gaullain 2005, rat, 14 days, mtDNA/nuclear (18S)  (n=9) 42

Nouette-Gaullain 2005, rat, 21 days, mtDNA/nuclear (18S)  (n=9) 42

Hypoxia models (n=18): p  = 0.568, I²= 24.4%

SuHx models
Gomez-Arroyo 2013, rat, 6 weeks, TAPSE ↓, ratio mitochondria to myofibrils  (mg/g)  (n=12) 27

Gomez-Arroyo 2013, rat, 6 weeks, TAPSE ↓, mitochondrial yield (mU/mg)  (n=12) 27 X

Liu 2017, rat, 14 weeks, CO =, CI =, RVEF =, citrate synthase activity (U/g protein)  (n=10) 20

SuHx models (n=10): p = 0.028, I²= 65.6%

MCT models
Balestra 2015, rat, 4 weeks, Citrate synthase activity (U/mg protein)  (n=12) 28

Enache 2012, rat, 2 weeks, citrate synthase  mRNA expression level  (n=26) 43 X

Enache 2012, rat, 4 weeks compensated, citrate synthase  mRNA expression level  (n=17) 43 X

Enache 2012, rat, 4 weeks decompensated, citrate synthase  mRNA expression level  (n=15) 43 X

Enache 2012, rat, 2 weeks, citrate synthase activity (U/g protein)  (n=26) 43

Enache 2012, rat, 4 weeks compensated, citrate synthase activity (U/g protein)  (n=17) 43

Enache 2012, rat, 4 weeks compensated, citrate synthase activity (U/g protein)  (n=15) 43

MCT models (n=0): p = 0.74, I²= 78.7%

PAB models
Lauva 1986, rat, 2 weeks, ratio mitochondria to myofibrils  (mg/g) (n=8) 44

Gomez-Arroyo 2013, rat, 6 weeks, TAPSE ↓, mitochondrial yield (mU/mg)  (n=12) 27

Gomez-Arroyo 2013, rat, 6 weeks, TAPSE ↓, whole tissue citrate synthase activity  (n=12) 27 X

Olivetti 1998, rat, 150 days, ratio mitochondria to myofibrills (n=17) 45

PAB models (n=20): p = 0.274, I²= 75.4%

COMBINED (n=147): p = 0.054, I²= 73.5%

Hedges' g (95% CI)

0.21 (-1.03-1.45)

-0.84 (-2.13-0.45)

-0.3 (-1.33-0.73)

-3.78 (-5.99--1.57)

-1.3 (-2.66-0.07)

-1.5 (-2.91--0.09)

-2.48 (-4.69--0.26)

-0.76 (-1.85-0.32)

0.39 (-0.37-1.15)

-0.81 (-1.77-0.14)

-0.73 (-1.78-0.31)

1.17 (0.36-1.99)

-0.16 (-1.08-0.76)

-1.13 (-2.22--0.05)

-0.18 (-1.23-0.87)

0.34 (-0.88-1.56)

-2.89 (-4.75--1.03)

-0.48 (-1.71-0.75)

-0.48 (-1.41-0.45)

-0.84 (-2.34-0.66)

-0.68 (-1.37-0.01)

0- 2 .5 2 .5

PDH activityC
Study

MCT models
Piao 2013, rat, 4 weeks, CO ↓,  TMD ↓ (n=14) 18

Piao 2010, rat, 1 month, CO ↓ (n=26) 15

COMBINED (n=64): p = 0.192, I²= 96.0%

PAB models
Fang 2012, rat, 4 weeks, CI ↓, TMD ↓ (n=9), p < 0.01 21

FHR models
Piao 2013, rat, 6-12 months, CO ↓ , TAPSE ↓ (n=20) , p < 0.01 16

COMBINED (n=69): p = 0.123, I²= 92.4%

Hedges' g (95% CI)

-1.79 (-2.98- -0.6)

1.19 (0.12- 2.27)

-0.289 (-3.21- 2.63)

-2.96 (-4.8- -1.12)

-4.61 (-6.27- -2.95)

-1.982 (-4.51- 0.54)

0- 2 .5 2 .5- 7 .5

Study

MCT models* 
Piao 2010, rat, 1 month, CO ↓, Langendorf (n=10) 15

Piao 2013, rat, 4 weeks, CO ↓,  TMD ↓, Langendorf (n=11) 18

COMBINED (n=21): , I²= 82.4%

PAB models
Fang 2012, rat, 8 weeks, CI ↓, TMD ↓, Seahorse (10 mM glucose)  (n=6) 21

Fang 2012, rat, 4 weeks, CI ↓, TMD ↓, Seahorse (10 mM glucose)  (n=6) 21

Fang 2012, rat, 4 weeks, CI ↓, TMD ↓,  Seahorse (5 mM glucose)  (n=6) 21 X

COMBINED (n=12): p= 0.000, I²= 0.0%

FHR models
Piao 2013, rat, 10-20 months, CO ↓ , TAPSE ↓, Langendorf (n=11) 16

Piao 2013, rat, 10-20 months, CO ↓ , TAPSE ↓, Seahorse  (n=14) 16

COMBINED (n=25): p = 0.000, I²= 0.0%

COMBINED (n=58): p = 0.082, I²= 84.5%

Hedges' g (95% CI)

0.19 (-0.93-1.31)

2.46 (0.97-3.96)

1.27 (-0.95-3.49)

-3.35 (-5.64--1.06)

-2.96 (-5.07--0.85)

-1.98 (-3.68--0.28)

-3.14 (-4.69--1.59)

-2.23 (-3.69--0.77)

-1.96 (-3.19--0.73)

-2.07 (-3.01--1.13)

-1.21 (-2.9-0.48)

carbohydrates – intact cardiomyocytesD-2

0- 2 .5 2 .5

Study

Hypoxia models
Rumsey 1999, rat, 7 days (n=7) 29

Rumsey 1999, rat, 14 days (n=7) 29

Rumsey 1999, rat, 20-36 days (n=7) 29

Rumsey 1999, rat, >41 days (n=7) 29

COMBINED (n=28): p = 0.304, I²= 0.0%

SuHx models
Liu 2017, rat, 14 weeks, CO =, CI =, EF = (n=10); p = ns 20

Hedges' g (95% CI)

-0.2 (-1.48-1.09)

-1.16 (-2.59-0.28)

0.19 (-1-1.58)

-0.48 (-1.78-0.83)

-0.35 (-1.01-0.32)

-1.26 (-2.62-0.09)

carbohydrates – isolated mitochondria (ADP-driven)D-1
mitochondrial respiratory capacity for carbohydrates

0- 1 1

MCAD - mRNAE
Study

Hypoxia models
Adrogue 2005, rat, 4 weeks (n=10) 34

Adrogue 2005, rat, 10 weeks (n=10) 34

Adrogue 2005, rat, 12 weeks (n=10) 34

Sharma 2003, rat, 2 days (n=10) 35

Sharma 2003, rat, 7 days (n=10) 35

Sharma 2003, rat, 14 days (n=10) 35

COMBINED (n=60): p < 0.001, I²= 94.1%

SuHx models
Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12) , p < 0.01 27

PAB models 
Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12) 27

Sack 1997, mouse, 7 days (n=43) 46

Borgdorff 2015, rat, 52±5 days, CI ↓, TAPSE ↓, TMD ↓, compensated (n=11) 5

Borgdorff 2015, rat, 52±5 days, CI ↓ ↓, TAPSE ↓ ↓, TMD ↓ ↓, decompensated (n=12) 5

COMBINED (n=78): p = 0.01, I²= 94.3%

COMBINED (n=150): p < 0.001, I²= 93.4%

Hedges' g (95% CI)

-23.43 (-33.76--13.1)

-14.25 (-20.6--7.91)

-12.43 (-17.99--6.87)

-0.35 (-1.48-0.78)

-11.71 (-16.96--6.46)

2.12 (0.67-3.58)

-8.25 (-13--3.5)

-2.65 (-4.42--0.88)

0.33 (-6-1.55)

-4.17 (-5.23--3.11)

-4.62 (-6.85--2.38)

-23.21 (-32.56--13.87)

-5.02 (-8.85--1.18)

-5.82 (-8.29--3.35)

5- 0 5- 2 5

Study

Hypoxia models
Rumsey 1999, rat, 7 days (n=13) 29

Rumsey 1999, rat, 14 days (n=13) 29

Rumsey 1999, rat, 20-36 days (n=13) 29

Rumsey 1999, rat, >41 days (n=13) 29

Nouette-Gaullain 2005, rat, 14 days (n=30) 42

Nouette-Gaullain 2005, rat, 21 days (n=30) 42

COMBINED (n=112): p = 0.004, I²= 21.3 %

SuHx models
Liu 2017, rat, 14 weeks, CO =, CI =, RVEF = (n=11); p = ns 20

COMBINED (n=123): p = 0.038, I²= 13.7%

Hedges' g (95% CI)

-0.04 (-1.32-1.24)

-1.04 (-2.45-0.37)

-0.98 (-2.37-0.42)

-1.68 (-3.27--0.08)

-1.18 (-1.98--0.38)

-0.15 (-0.89-0.59)

-0.74 (-1.24--0.23)

-1.27(-2.62-0.09)

-0.75 (-1.45--0.04)

fatty acids – isolated mitochondria (ADP-driven)F-1
mitochondrial respiratory capacity for fatty acids

0- 2 .5 2 .0

F-2 fatty acids – intact cardiomyocytes

Study

PAB models
Fang 2012, rat, 8 weeks, CI ↓, TMD ↓ Langendorf (n=11) 21

Fang 2012, rat, 8 weeks, CI ↓, TMD ↓ Seahorse  (n=6) 21

COMBINED (n=11): p = 0.000, I²= 0.0 %

FHR models
Piao 2013, rat, 10.-20 months, CO ↓ , TAPSE ↓, Langendorf (n=11) 16

Piao 2013, rat, 10.-20 months, CO ↓ , TAPSE ↓,Seahorse  (n=14) 16

COMBINED (n=25): p = 0.000, I²=  0.0%

Hedges' g (95% CI)

3.41 (1.62-5.2)

2.84 (0.78-4.89)

3.08 (1.95-4.21)

-2.17 (-3.61--0.72)

-2.51 (-3.87--1.15)

-2.35 (3.34--1.36)

0- 4 4

Figure 5. Mitochondrial function. Plots of mitochondrial content measured by mentioned methods (A). Bubble plot showing relation between
mitochondrial content and duration of RV PL (B). Forrest plot of PDH activity as reflection of mitochondrial breakdown of pyruvate to acetyl-CoA
(C). Forrest plots of mitochondrial respiratory capacity for carbohydrate metabolites measured in isolated mitochondria (ADP-driven) (D-1) or
intact cardiomyocytes (D-2). Forrest plots of MCAD expression at mRNA level (E), as representative of the b-oxidation. Forrest plots of
mitochondrial respiratory capacity for fatty acids measured in isolated mitochondria (F-1) and intact cardiomyocytes (F-2). Data are presented as
Hedges’ g. Combined Hedges’ g are presented as squares: gray representing Hedges’ g of a specific model, black representing Hedges’ g of all
included studies. Bars represent 95% CI. Bubble size represents relative study precision, calculation based on SD. Gray bubbles are not included
in meta-analysis. Black line represents regression line, gray lines represent 95% CI. = indicates not statistically significant affected. ↓, decreased;
↓↓, decreased compared with decompensated group; CI, cardiac index; CO, cardiac output; FHR, fawn hooded rats; I2, level of heterogeneity;
MCT, monocrotaline; n, number of included animals; PAB, pulmonary artery banding; PDH, pyruvate dehydrogenase; PL, pressure load; RVEF, RV
ejection fraction; TAPSE, tricuspid annular plane systolic movement; X, not included in meta-analysis. *Significantly (P<0.05) increased
compared with PAB.
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Figure 6. Metabolic changes in the pressure-loaded right ventricle: summarizing results of multiple meta-
analyses. Black components are included in meta-analysis. ~ indicates unchanged; ↑, significant increase or
positive relation; ↗, positive trend (P<0.15); ↘, negative trend (P<0.15); ↓, significant decrease or negative
relation; CD36, cluster differentiation 36 (cellular fat transporter); CPT1B, carnitine? palmitoyltransferase 1B;
DUR, duration; ERRa, estrogen-related receptor alpha; FDG-uptake, fluorodeoxyglucose uptake; GLUT, glucose
transporter; HK, hexokinase; LDH, lactate dehydrogenase; M, model effect; MCAD, medium chain acyl CoA
dehydrogenase; NRF, nuclear respiratory factor; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase
kinase; PGC1a, PPAR gamma complex 1 alpha; PPARa, peroxisome proliferator-activated receptor alpha.

DOI: 10.1161/JAHA.119.012086 Journal of the American Heart Association 9

Metabolic Changes in the Pressure-Loaded RV Koop et al
S
Y
S
T
E
M
A
T
IC

R
E
V
IE

W
A
N
D

M
E
T
A
-A

N
A
L
Y
S
IS

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 17, 2019



variables of the intervention group treated with metabolic
therapy compared with those of the intervention group
without treatment are shown in Table S5. The effect of
dichloroacetate on PDH activity was studied in 3 studies
showing a significant increase in a FHR model,16 with contrary
results regarding 2 MCT models.15,17 The effects of
therapeutic interventions on all other 21 reported variables
were studied incidentally, precluding data synthesis and
conclusions.

Discussion
In this systematic review on metabolism in the pressure-
loaded RV, we identified 26 animal and 4 human studies
eligible for meta-analysis. The systematic review combined
with multiple separate meta-analyses yielded a uniform
increase in glucose uptake and glycolysis, whereas fatty acid
uptake and changes in oxidative metabolism were less
consistent. The effect of therapeutic interventions could not
be analyzed because of the large variety of outcome variables
used and compounds used.

In the current study, there are strong indications that
glycolysis is increased in the pressure-overloaded RV. Both
gene expression of HK1, an important enzyme controlling the
first step of glycolysis, and the capacity for glycolysis
measured by Seahorse and Langendorf were significantly
increased. In contrast, HK2 was unchanged. Previous studies
in the LV have identified HK2 as a modulator of reactive
oxygen species and described attenuating effects on cardiac
hypertrophy.48,49 HK2, involved in anabolic pathways by
providing glucose-6-phosphate for glycogen synthesis, also
fulfills a role in providing glucose-6-phosphate to the pentose
phosphate pathway. Contrary to the many roles of HK2, HK1
primarily facilitates glycolysis.50,51 HK1 is primarily expressed
in neonatal cardiomyocytes and is associated with the fetal
gene program,50,52,53 characterized by better resistance
against an oxygen-poor environment such as in the RV
pressure load.5,39,54–56 The activation of the fetal gene
program is also reflected in an increased expression of
GLUT1, supporting increased glucose uptake, which increases
the ability of increased glycolysis.16,27,32 Remarkably, HK1
and GLUT1 both concern insulin-independent isoforms
whereas HK2 and GLUT4 concern insulin-dependent iso-
forms.57 The current meta-analysis reveals a clear pattern in
the pressure-overloaded RV differentiating between the
insulin-independent versus insulin-dependent profiles, direct-
ing to glycolysis by activation of insulin-insensitive mecha-
nisms.

The increase of glycolysis in the pressure-loaded RV is also
supported by the increased glucose uptake measured by FDG
by positron emission tomography (PET)-computed tomogra-
phy. PET-computed tomography has the ability to assess the

actual uptake in vivo, whereas gene or protein expression of
involved genes and respiratory capacity of isolated mitochon-
dria are an approximation of the actual situation in vivo.
However, FDG uptake represents glucose uptake rather than
metabolic capacity itself. Studies describing FDG uptake that
were excluded from meta-analysis endorse our findings.58–62

In addition, increased RV FDG uptake has been associated
with increased pressure load58,60,63,64 and altered dimen-
sions,60,62,64,65 and inverse correlations with RV func-
tion,62,63,65 cardiac function,60 and clinical outcome.66,67

Meta-analysis of substrate-specific oxidative metabolism in
the pressure-loaded RV reflects an ambiguous character.
Glucose oxidation is regulated via pyruvate dehydrogenase
kinase, which inhibits breakdown of pyruvate. The expression
of pyruvate dehydrogenase kinase in response to pressure
load in the RV varied widely with different models used
(Figure S4A through S4D). In addition, the respiratory capacity
for carbohydrates was also affected by the model used.
Although cardiac performance was decreased in both MCT
and PAB models to the same extent, respiratory capacity
increased in MCT models, but decreased in pressure load only
via PAB. Similarly, with respect to respiratory capacity for
fatty acids, PAB models behaved differently from FHR, while
there are no data from MCT models. Taken together, these
data suggest that the RV oxidative capacity changes in
response to pressure load are dependent upon methodolog-
ical differences, and may be subsequently dependent on
model or disease, cardiac function, and possibly on clinical
severity. More cooperation between research groups and
comparative studies between fixed RV-PA uncoupling (in PAB)
versus dynamic RV-PA uncoupling (eg, in MCT) are needed to
identify the systemic changes that may interfere with the
cardiac response. Intriguingly, whereas there was variation in
the respiratory capacity for fatty acids, the changes in 1 of the
genes oxidizing fatty acids (MCAD) were uniform. Downreg-
ulation of the b-oxidation was supported in the literature by
decrease of other genes from the acyl-coenzyme A (CoA)
dehydrogenases family at both mRNA16,27 and protein
level.27,46,68 Downregulation of the oxidation phase has been
suggested based on decreased expression of genes as
HADH,5,69 HADHA, HADHB, and EHHADH.5,68,70 In addition,
malonyl-CoA decarboxylase is described to be decreased in a
model of hypoxia.34 Oxidative metabolism in general in the
pressure-loaded RV was studied in 2 studies and therefore is
not included in the meta-analysis. The clearance of11C-
acetate was used as representative of the tricarboxylic cycle.
RV clearance rates correlated with the rate pressure product
and oxygen consumption in idiopathic pulmonary arterial
hypertension (iPAH),71 and appeared to be higher PH (chronic
thromboembolic PH [CTEPH], pulmonary arterial hypertension
(PAH), and PH with unclear multifactorial mechanisms)
compared with controls.72 The current study stresses the
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need for further research in order to clarify changes caused by
pressure load itself and changes as a result of the specific
inducement of RV pressure load or a potential systemic
disease.

The systematic literature search showed that processes
involved in the transport of long-chain fatty acids varied in
different models and different cohorts of patients with PH.
Gene expression of CD36, the transporter of long-chain fatty
acids across the cellular membrane, was decreased in SuHx
rats, unaffected in PAB rats, and increased at protein level in
patients with a BMPR2 mutation.27,41 Studies measuring gene
expression of fatty acid binding proteins (FABP1-7) and fatty
acids transporters (SLC7A1-6) in the pressure-loaded RV are
scarce and were ambiguous.16,31 We excluded studies
describing actual fatty acid uptake measured with positron
emission tomography tracers in the patient cohort without a
control group. These studies also yielded various changes.
Different cohorts representing different types of diseases,
including precapillary PH and chronic obstructive lung
disease, showed both pressure load–dependent73,74 and –
independent59,60,75 cellular uptake. Support of load-depen-
dent uptake was given by the reversibility of increased uptake
after abolishing increased pressure load in patients with
chronic thromboembolic PH.74 In addition, positive correla-
tions between fatty acid uptake and markers of RV hypertro-
phy were observed60,75 and, as shown for glucose uptake
measured by positron emission tomography–computed
tomography, uptake of free fatty acids has been inversely
correlated with RV ejection fraction59,75 as well. Although no
correlation was found with cardiac index,74 fatty acid uptake
has been positively correlated with clinical outcome,
expressed by 6-minute walking distance, New York Heart
Association class, and mortality.74,75 Mitochondrial uptake of
long-chain fatty acids in the healthy heart is predominately
facilitated by CPT1B. CPT1B at the mRNA level negatively
correlated with the duration of pressure load (Figure 4B).
However, CPT1B expression in human forms of PAH tended to
increase.37 Few studies described CPT1A, describing incon-
sistent results.14,16,27,76 Although CPT1A was originally con-
sidered an insignificant player in muscle (including heart)
tissue, recent publications identified increased CPT1A as a
key step in early metabolic remodeling, which is linked to
reduced fatty acid oxidation.77 Besides the contradictory
results regarding fatty acid uptake between the different
animal models and between different patient cohorts, no
structural consistency was found between a specific animal
model with a specific human disease. Nevertheless, a disease-
specific pattern seems to apply for intramyocardial lipid
deposition. Published results indicate lipid accumulation
based on decreased fatty acid oxidation and increased fatty
acid uptake by increased translation of CD36 to plasma
membrane in heritable PAH specifically,78,79 whereas RV

ceramide content in chronic hypoxia decreased.80 Unfortu-
nately, only 3 studies reported intracardiac lipid deposition of
various lipids, which made meta-analysis impossible. Further
research should aim for better understanding of the transla-
tional possibilities from experimental studies to human
disease.

PGC1a acts on transcriptions factors such as the PPARs
and is an important transcription factor of mitochondrial
content. Coactivation of PGC1a with PPAR isoforms is known
to induce activation of downstream genes regarding fatty acid
handling including uptake and b-oxidation, especially fat
transporter genes CD36 and CPT1B, and b-oxidation gene
MCAD.81–84 PPARa is the most studied PPAR in the heart and
this also applies for the pressure-loaded RV specifically.27,34,85

Nevertheless, data of PPARa expression in the pressure-
loaded RV is still limited and mostly showing statistically
insignificant results (Figure S4D). This is in contrast to
PGC1a, which is significantly negative affected in the
pressure-loaded RV and seems to be related to mitochon-
drial content in models of RV pressure load. It must be
mentioned that the different studies identified mitochondrial
content using different methods, since standardized meth-
ods are lacking. Future studies should clarify whether
decreased mitochondrial content indeed is predominately
established in models of SuHx and to what extent this
mechanism is relevant for human PH disease. Remarkably,
both PGC1a and PPARa are not identified in studies with
unbiased approach by performing microarray5,55,86–88 or
proteomics.87 This could imply that changes of PGC1a or
PPARa are not causal for altered processes caused by RV
pressure load.

As shown in this review, metabolic modulation has been
primarily focused on the reduction of glycolysis by activation
of glucose oxidation. The most studied compound is
dichloroacetate, which inhibits pyruvate dehydrogenase
kinase and thereby indirectly stimulates activation of PDH.
Interestingly, in the pressure-loaded RV, the different isoforms
of pyruvate dehydrogenase kinase and PDH encompass varied
results (Figures S2 and 5). However, studies specifically
focusing on interfering in the activity of these enzymes in the
pressure-loaded RV by dichloroacetate show positive effects
on cell homeostasis, mitochondrial function, and cardiac
function,15–17 with no effect on these functions in controls.15

In MCT and FHR, at respectively 6 weeks and >10 to
20 months of treatment, dichloroacetate leads to normalized
levels of the upregulated PDK2 and PDK4, with restoration of
PDH activity.16,17 This was accompanied by normalization of
FOXO1 levels, which were upregulated in disease in FHR
animals and patients with PAH.16 This is consistent with the
concept of activation of the fetal gene program and insulin-
independent mechanisms in the pressure-loaded RV, since
sustained FOXO1 activation in neonatal cardiomyocytes is
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known to diminish insulin signaling and impair glucose
metabolism.89

Limitations
This study has some limitations that should be discussed. To
guarantee actual pressure load on the RV, meta-analysis
includes both studies with proven increased pressure load by
RV systolic pressure and mean pulmonary artery pressure,
and by RVH. RVH was expressed as increased RV weight,
Fulton index, or RV to body weight ratio. Although hypertrophy
is a plausible effect of pressure load, the degree of
hypertrophy within studies from the current literature search
is independent of the actual degree of pressure load (data not
shown). This might be explained by a predominant use of
models of severe pressure load. This together with the fact
that RVH based on weight is a widely supported confirmation
of RV pressure overload resulted in RVH as an inclusion
criterion in addition to increased pressure load.

In line with the statement of the Systematic Review Center
for Laboratory animal Experimentation (SYRCLE),24 the aim of
this meta-analysis was to assess the general direction and
magnitude of RV pressure load of the specific variable (rather
than to obtain a precise point estimate explicitly) with
additional exploration of the sources of heterogeneity by
using meta-regression analyses. We used effect size defined
as Hedges’ g. Hedges’ g is the criterion standard in small
samples (<10 samples per group), which includes a correction
factor for small sample size bias,90,91 and therefore is
considered as a criterion standard in meta-analysis of
systematic reviews in animal data from experimental studies.
However, we believe that the use of Hedges’ g encompasses a
specific point that should be addressed. Since the use of
effect sizes implies standardized mean differences, calcula-
tions are based on a pooled SD, although unequal variances
may be present. This may induce type I errors. However, the
small and unequal sample sizes will likely cancel out this
effect. An alternative statistic method would be statistics by
using Z scores, but because we aimed to provide an overview
of the results of the different studies, by the visualization by
figures, this method was not preferred.

The interpretation of meta-analysis results were chal-
lenged by substantial degrees of heterogeneity, which was
partly explored by performing (1) meta-regression analysis for
duration and degree of pressure load, and (2) t tests or 1-way
analysis of variance of the results of the different models.
This resulted in 3 significant correlations with duration and
various differences between models. Only 1 correlation was
found with the degree of RV pressure load, which could be
because of the fact that included studies encompass
significant loading conditions. Systematically testing for the
effect of used species was impossible because only 1 study

concerned animal species other than rat. This, however,
contributed to large homogeneity at this particular point.
Furthermore, we decided to use an almost similar
approach for human as for animal studies in order to be
able to apply the same methods regarding meta-analysis.
Subsequently, a number of clinical studies were excluded
from meta-analysis because of aspects regarding study
design. Nevertheless, most of the excluded studies described
FDG uptake and supported the presented results in the meta-
analyses. Other human studies that were excluded from the
meta-analyses described uptake of fatty acids, as has been
described above.

Considerations Regarding Future Research
Because of the use of differing designs of the included
studies, the power of the meta-analysis is limited. In contrast
to clinical trials, replication is still scarce in experimental
research. The current study emphasizes the need for replica-
tion and the use of more standardization in models, methods,
and outcome variables in studies that studied metabolic
derangements in RV pressure load. This could be achieved in
joint publications of different research groups. Available data
describe to a certain extent the degree and duration of
pressure load. In pursuing actual translation, absolute deter-
mination of pressure load will be necessary in both animals
and humans, with the intention of differentiating between the
actual component of pressure load and the cause of disease,
including potential comorbidities. The cause of disease, or the
character of the model, is important since models of PAH,
such as hypoxia, SuHx, MCT, and FHR, may differ in their
systemic effects and are known for differences in disease
severity and cardiovascular interaction. These differences are
driven by involvement of endothelial damage, level of
inflammation, cytokine migration, and vasoconstriction. While
isolated hypoxia with the absence of endothelial damage in
the pulmonary vasculature induces mild PH only, FHR leads to
more progressive PH, whereas SuHx and MCT will induce
failure, with high rates of mortality in MCT. Exact mechanisms
still need to be unraveled. The current meta-analysis directs to
further exploration of the role of diseases that expose the RV
to altered insulin sensitivity or oxygen tension in remodeling
during RV pressure load. The current overview shows that
determination of protein expression is limited compared with
gene expression, and often shows divergent results. Also,
measurements of substrate activities are relatively scarce. We
suggest that future studies in the pressure-loaded RV should
be more uniform and integral with respect to expression level
(gene, protein, or activity level). The variables of metabolism to
be studied should be uniform and those that are most optimal
should be chosen based on research using unbiased
approaches (ie, microarray, RNA sequences, proteomics, or
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metabolomics). Given the abovementioned observations, the
translational applicability between, and within, animal models
and human diseases of PH should most critically and carefully
be considered.

Conclusions
This systematic review and meta-analysis of metabolic
variables in the pressure-loaded RV showed a uniform
increase in glucose uptake and glycolysis. Results regarding
fatty acid uptake and changes in oxidative metabolism were
divergent and model specific. To actually use metabolism as a
therapeutic target in the RV exposed to increased pressure
load in clinical practice, we need to learn more about model-
and disease-specific mechanisms of fatty acid uptake and
mitochondrial impairment.

Disclosures
None.
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Data S1. 
 
Supplemental Methods 
 
Search strategy 

1. Component ‘right ventricle’ 

“right ventricle”[tiab] OR “right ventricles”[tiab] OR “right ventricular”[tiab] OR “ventriculus 

dexter”[tiab] OR “right heart”[tiab] OR “RV”[tiab] 

2. Component ‘pressure load’ 

“pressure load”[tiab] OR “ pressure loading”[tiab] OR “ pressure loaded”[tiab] OR “ pressure loads”[tiab] OR 

“ pressure overload”[tiab] OR “ pressure overloading”[tiab] OR “ pressure overloaded”[tiab] OR “pressure 

overloads”[tiab] OR “increased afterload”[tiab] OR “increased afterloading”[tiab] OR “afterloaded”[tiab] OR 

“increased afterloads”[tiab] OR “pulmonary artery banding”[tiab] OR “ pulmonary hypertension”[tiab] OR 

“pulmonary arterial hypertension”[tiab] OR “pulmonary valve stenosis”[tiab] OR “pulmonary valve 

calcification”[tiab] OR “calcification pulmonary valve”[tiab] OR “pulmonary valve diseases”[tiab] OR 

“pulmonary valve disease”[tiab] OR “pulmonary stenosis”[tiab] OR “stenosis pulmonary valve”[tiab] OR 

“pulmonary outflow tract obstruction”[tiab] OR “obstruction pulmonary outflow tract”[tiab] OR “pulmonary 

artery obstruction”[tiab] OR “pulmonary artery stenosis”[tiab] 

3. Component ‘metabolism’ 

“metabolism”[tiab] OR “metabolic”[tiab] OR “energy metabolism”[tiab] OR “basal metabolism”[tiab] OR 

“carbohydrate metabolism”[tiab] OR “metabolic network”[tiab] OR “metabolic pathways”[tiab] OR 

“metabolic networks and pathways”[tiab] OR “biosynthetic pathways”[tiab] OR “metabolic activation”[tiab] 

OR “metabolic inactivation”[tiab] OR “secondary metabolism”[tiab] OR “metabolic remodeling”[tiab] OR 

“metabolic remodelling”[tiab] OR “metabolic”[tiab] OR “metabolic reprogramming”[tiab] OR 

“metabolite”[tiab] OR “metabolomic”[tiab] OR “metabolomics”[tiab] OR “metabolite profile”[tiab] OR 

“metabolites profiles”[tiab] OR “metabolite derangements”[tiab] OR “metabolomic signatures”[tiab] OR 

“substrate flux”[tiab] OR “mitochondria”[tiab] OR “mitochondrial”[tiab] OR “mitochondrion”[tiab] OR 

“mitochondrial energy transduction”[tiab] OR “glucose metabolism”[tiab] OR “ glucose oxidation”[tiab] OR 

“gluconeogenesis”[tiab] OR “glycogenolysis”[tiab] OR “glycolysis”[tiab] OR “glycosylation”[tiab] OR 

“pyruvate”[tiab] OR “glucose”[tiab] OR “pentose phosphate pathway”[tiab] OR “fatty acid”[tiab] OR “fatty 

acids”[tiab] OR “long chain fatty acids”[tiab] OR “lipid metabolism”[tiab] OR “lipolysis”[tiab] OR 

“lipoylation”[tiab] OR “fatty acid oxidation”[tiab] OR “lipotoxicity”[tiab] OR “triglyceride”[tiab] OR 

“ceramide”[tiab] OR “lipid deposition”[tiab] OR “beta-oxidation”[tiab] OR “beta oxidation”[tiab] OR “fatty 

acid transport”[tiab] OR “β-oxidation”[tiab] OR “branched chain amino acids”[tiab] OR “branched chain 

amino acid”[tiab] OR “amino acid”[tiab] OR “amino acids”[tiab] OR “BCAA”[tiab] OR “branched chain 

aminotransferase”[tiab] OR “branched-chain aminotransferase”[tiab] OR “BCAT”[tiab] OR “brached chain 

keto acids”[tiab] OR “brached-chain keto acids”[tiab] OR “BCKA”[tiab] OR “BCKA dehydrogenase 

complex”[tiab] OR “BCKD”[tiab] OR “ketone”[tiab] OR “ketones”[tiab] OR “ketogenesis”[tiab] OR 

“ketosis”[tiab] OR “ketone body”[tiab] OR “citric acid cycle”[tiab] OR “tricarboxylic acid cycle”[tiab] OR “TCA 

cycle”[tiab] OR “Krebs cycle”[tiab] OR “ATP”[tiab] OR “ADP”[tiab] OR “adenosine diphosphate”[tiab] OR 

“adenosine triphosphate”[tiab] OR “respiratory transport”[tiab] OR “oxidation-reducation”[tiab] OR 

“oxidative phosphorylation”[tiab] OR “phosphorylation”[tiab] OR “electron transport”[tiab] OR “electron 

transport chain”[tiab] OR “metabolic targets”[tiab] OR “metabolic therapy”[tiab] OR “fatty acid oxidation 

inhibitor”[tiab] OR “glucose oxidation inhibitor”[tiab] OR “fatty acid uptake inhibitor”[tiab] OR “metabolic 

inhibitor”[tiab] OR “metabolic activator”[tiab] OR “inhibition of metabolic pathways”[tiab] OR “inhibition of 
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metabolic pathway”[tiab] OR “metabolic inducers”[tiab] OR “metabolic inducer”[tiab] OR “metabolic 

inducement”[tiab] OR “metabolic activation”[tiab] OR “metabolic regulation”[tiab] OR “regulation of 

metabolism”[tiab] OR “regulation of fatty acid”[tiab] OR “regulation of fatty acids”[tiab] OR “stimulation of 

fatty acid metabolism”[tiab] OR “inhibition of fatty acid metabolism”[tiab] OR “regulation of glucose 

oxidation”[tiab] OR “regulation of glycolysis”[tiab] OR “stimulation of glucose oxidation”[tiab] OR “inhibition of 

glycolysis”[tiab] OR “inhibition of glucose oxidation”[tiab] OR “amino acid administration”[tiab] OR “amino 

acids administration”[tiab] OR “metabolic defect”[tiab] OR “catabolic defect”[tiab] OR “cell respiration”[tiab] 

OR “cell hypoxia”[tiab] OR “respiratory burst”[tiab] OR “anaerobiosis”[tiab] OR “oxidative stress”[tiab] 
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Table S1. List of studies studying metabolic parameters in the pressure loaded right ventricle included for full text review. 

 
 
 

 
Author Year Title PMID Embase Animal Human Specie Model Disease Inclusion 

    Accession ID      meta- 

  analysis  

 
Cooper, et 1974 Normal myocardial function and 4274811 1975096311 x cat PAB  

al.1  energetics after reversing pressure      

 

Cooper, et 
 

1981 
overload hypertrophy 
Chronic progressive pressure overload of 

 

6450649 

  

x 
 

cat 
 

PAB 

al.2  the cat right ventricle.      

Reibel, et al.3 1983 Altered coenzyme A and carnitine 
metabolism in pressure-overload 

6222659  x cat  

  hypertrophied hearts.      

Lauva, et al.4 1986 Control of myocardial tissue components 2877565  x cat PAB x 
  and cardiocyte organelles in pressure- 

overload hypertrophy of the cat right 

      

  ventricle.       

Schneider, 
et al.5 

1987 Development and regression of right heart 
ventricular hypertrophy: biochemical and 

2963447  x    

  morphological aspects.       

Olivetti, et 1988 Cellular basis of wall remodeling in long- 2970334  x rat PAB x 
al.6  term pressure overload-induced right 

ventricular hypertrophy in rats. 

      

Hung, et al.7 1988 Morphometry of right ventricular papillary 3381706  x    

  muscle in rat during development and       

  regression of hypoxia-induced 
hypertension. 

      

Saito, et al.8 1991 Oxygen metabolism of the hypertrophic 1839241  x dog PAB  

 

Morioka, et 
 

1992 
right ventricle in open chest dogs. 
Changes in contractile and non-contractile 

 

1534855 

  

x 
 

rat 
 

MCT60 

 

al.9  proteins, intracellular Ca2+ and       

  ultrastructures during the development of       

  right ventricular hypertrophy and failure       
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 in rats.  

Sivitz, et al.10 1992 Pretranslational regulation of two cardiac 1415537 x  rat hypoxia  x 
  glucose transporters in rats exposed to        

  hypobaric hypoxia.        

Baudet, et 
al.11 

1994 Biochemical, mechanical and energetic 
characterization of right ventricular 

7731052 x  ferret PAC   

  hypertrophy in the ferret heart.        

Ishikawa, et 
al.12 

1995 Enalapril improves heart failure induced 
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Table S2. Meta-regression analyses: variables versus duration of RV pressure load.  

 
 

coefficient constant std. error t  P > |t| [95% conf. interval] 

FDG-uptake -0.006 1.831118 0.028237 -0.21 0.851 -0.12751 0.115473 

GLUT1 mRNA 0.007318 1.338181 0.017441 0.42 0.681 -0.03009 0.044725 

GLUT1 protein -0.06177 5.544784 0.193256 -0.32 0.780 -0.89329 0.769742 

GLUT4 mRNA -0.08868 -0.1779 0.094733 -0.94 0.385 -0.32048 0.143124 

GLUT4 protein 0.062796 -1.92728 0.044244 1.42 0.251 -0.07801 0.2036 

HK1 mRNA -0.41346 20.52151 0.203145 -2.04 0.081 -0.89382 0.066904 

HK2 mRNA 0.013838 -0.26506 0.035005 0.4 0.703 -0.06688 0.09456 

CTP1B mRNA -0.26705 9.571756 0.071064 -3.76 0.033 -0.49321 -0.0409 

mitochondrial content -0.0066 -0.41463 0.009553 -0.69 0.507 -0.02821 0.015005 

mitochondrial content  
(first six weeks only) 

-0.12221 2.461455 0.025414 -4.81 0.002 -0.1823 -0.06211 

PDH mRNA -0.0066 -0.26024 0.071658 -0.09 0.935 -0.31492 0.301721 

PDK4 mRNA -0.20665 0.005799 0.178042 -1.16 0.310 -0.70097 0.287676 

PGC1a mRNA -0.06271 0.634076 0.021666 -2.89 0.044 -0.12287 -0.00256 

PGC1a protein -0.04477 0.977281 0.03338 -1.34 0.272 -0.151 0.061461 

PPAR mRNA -0.03096 0.785598 0.023265 -1.33 0.232 -.0878866 0.025968 

MCAD mRNA -0.10478 -3.09365 0.096481 -1.09 0.313 -0.33292 0.123366 

MCAD protein 0.120205 -5.58791 0.080062 1.5 0.272 -0.22427 0.464684 

resp. cap. Glucose - ADP driven -0.00781 -0.53042 0.009609 -0.81 0.566 -0.1299 0.114282 

resp. cap. Glucose - whole cells -0.11876 3.300385 0.114537 -1.04 0.409 -0.61157 0.374057 

resp. cap. FA - ADP driven -0.00753 -0.49098 0.010332 -0.73 0.519 -0.04041 0.025351 

Significant p-values shown in bold. 
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Table S3. Meta-regression analyses: variables versus degree of RV pressure load.  
 
 

coefficient constant std. error t  P > |t| [95% conf. interval] 

FDG-uptake -0.605857 3.8261 1.127987 -0.54 0.628 -4.19562 2.983902 

GLUT1 mRNA -0.097231 1.875722 0.258773 -0.38 0.771 -3.38525 3.19079 

GLUT4 protein 0.6982679 -0.7738904 0.884316 0.79 0.460 -1.46558 2.86211 

HK1 mRNA 2.672385 -14.20094 1.530079 1.75 0.223 -3.91101 9.255784 

HK2 mRNA 0.2727004 -2.639479 0.392468 0.69 0.518 -0.73617 1.281572 

mitochondrial content -0.490853 0.6067835 0.163592 -3 0.040 -0.94506 -0.03665 

PDH mRNA -0.19941 1.375868 0.195707 -1.02 0.415 -1.04147 0.642648 

PDK4 protein -5.779816 6.268431 8.17396 -0.71 0.608 -109.64 98.0802 

PDK1 mRNA 0.2356872 -2.020017 0.125199 1.88 0.311 -1.35512 1.826494 

PDK1 protein 1.077672 -0.6647883 2.190228 0.49 0.709 -26.7518 28.90716 

MCAD mRNA 1.856523 -19.68273 5.871176 0.32 0.782 -23.4051 27.11816 

MCAD protein -0.287837 0.7897496 0.113183 -2.54 0.239 -1.72596 1.150285 

resp. cap. Glucose - ADP driven 0.2589947 -1.225371 0.286097 0.91 0.432 -0.65149 1.169482 

resp. cap. FA - ADP driven -0.257863 0.0167995 0.519064 -0.5 0.669 -2.49122 1.975488 

Significant p-values shown in bold. 
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Table S4. Level of significance of meta-analysis and meta-regression.  

 mRNA expression level protein expression level 

parameter meta-
analysis 

model effect 
(increased 
compared) 

duration 
effect 

effect of 
degree of 
pressure 
load 

meta-
analysis 

model effect 
(increased 
compared) 

duration 
effect 

effect of 
degree of 
pressure 
load 

GLUT1 ↑ (0.000) ~ ~ ~ ↑ (0.009) MCT vs. hypoxia, PAB 
and FHR 

~ ~ 

GLUT4 ~ ~ ~ ~ ~ ~ ~ ~ 
CTP1B ~ ~ ↓ (0.033) N/A N/A N/A N/A N/A 
HK1 ↑ (0.000) ~ ↘ (0.081) ~ N/A N/A N/A N/A 
HK2 ~ ~ ~ ~ N/A N/A N/A N/A 
PDH ~ ~ ~ ~ ↘ (0.123) ~ ~ N/A 
PDK4 ↘ (0.110) ~ ~ ~ ~ ~ N/A - 
PDK1 N/A N/A N/A ~ ~ ~ N/A ~ 
PDK2 N/A N/A N/A N/A ~ ~ N/A N/A 
MCAD ↓ (0.000) ~ ~ ~ ↘ (0.141) ~ ~ ~  
PGC1α ↓ (0.008) ~ ↓ (0.044) ~ ~ MCT vs. SuHx ~  N/A 
PPARα ~ ~ ~ N/A N/A N/A N/A N/A 
 

in vivo measurements 

parameter meta-
analysis 

model effect 
(increased compared) 

duration 
effect 

effect of degree 
of pressure load 

FDG-uptake ↑ (0.000) ~ ~ ~ 
Glycolysis – whole cells (i.e. Langendorf, Seahorse) ↑ (0.000) ~ N/A N/A 
Respiratory capacity, carbohydrates  – isolated mitochondria (i.e. Oroboros, Clark-type) ↘ (0.085) ~ ~ ~ 
Respiratory capacity, carbohydrates  – whole cells (i.e. Langendorf, Seahorse) ↘ (0.082) MCT vs. PAB and FHR ~  N/A 
Respiratory capacity, fatty acids  – isolated mitochondria (i.e. Oroboros, Clark-type) ↓ (0.001) ~ ↘ (0.130) ~ 
Respiratory capacity, fatty acids  – whole cells (i.e. Langendorf, Seahorse) ~ PAB vs. SuHx. N/A N/A 

 

combined measurements 

parameter meta-
analysis 

model effect duration 
effect 

effect of degree 
of pressure load 

Mitochondrial content ~ ~ ~ 
(≤6 days (0.002)) 

~ 

↑significant increase or positive relation; ↓ significant decrease or negative relation; ↗positive trend (p<0.15); ↘ negative trend (p<0.15); ~ unchanged. 
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Table S5. Overview of Hedges’ g for metabolic parameters in models of RV pressure load subjected to therapeutic interventions.  

animal # Year Author 

Hit 

duration Model Therapie 
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Rat 19949938 2010 Piao40 1 month MCT60  DCA -1.68 -2.58  -0.41      

 

-0.99         

Rat 23247844 2012 Piao57 

10-20 

months FHR 

DCA, acute 

treatment                   

Rat 23247844 2012 Piao57 

10-20 

months FHR  

DCA, 

chronic 

treatment (6 

months) -1.44    0.01    -2.74* 4.13*  -1.51* 0.58 0.36 0.48 0.60 -0.95  

Rat 26763846 2016 Sun92 6 weeks MCT 

DCA 

50mg/kg           1.62*  -6.14*  0.47  -1.78*  

Rat 26763846 2016 Sun92 6 weeks MCT 

DCA 

150mg/kg           3.27*  -0.86*  0.40  -2.6*  

Rat 26763846 2016 Sun92 6 weeks MCT 

DCA  

200 mg/kg           3.38*  -6.89*  0.33  -3.20*  

Rat 23794090 2013 Piao54 4 weeks MCT DON -2.19      -1.10   1.14*         

Rat 27688036 2016 Drozd87 9 weeks SuHx ERA   -2.67* -1.20               

Rat 28320896 2017 Liu100 14 weeks SuHx oestrogen                  3.36* 

Rat 21874543 2012 Fang50 4 weeks PAB RAN -1.46* -0.45604    -1.83* -2.55* -0.46 -0.08 2.01*         

Rat 21874543 2012 Fang50 4 weeks PAB 

RAN, in 

vitro                   

Rat 21874543 2012 Fang50 8 weeks PAB TMZ -1.30* -1.33*    -1.41* -1.18* -0.18 -0.18 1.36*         

Rat 21874543 2012 Fang50 8 weeks PAB 

TMZ, in 

vitro                   
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* p mentioned in study < 0.05 
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Rat 19949938 2010 Piao40 1 month MCT60  DCA 0.65  3.20*      -1.59* 

Rat 23247844 2012 Piao57 

10-20 

months FHR 

DCA,  

acute 

treatment -0.79  3.51*   -1.22*    

Rat 23247844 2012 Piao57 

10-20 

months FHR  

DCA, 

chronic 

treatment  

(6 months) -0.71   0.35   0.40   

Rat 26763846 2016 Sun92 6 weeks MCT 

DCA 

50mg/kg         -2.72* 

Rat 26763846 2016 Sun92 6 weeks MCT 

DCA 

150mg/kg         -5.83* 

Rat 26763846 2016 Sun92 6 weeks MCT 

DCA  

200 mg/kg         -5.97* 

Rat 23794090 2013 Piao54 4 weeks MCT DON         -0.92 

Rat 27688036 2016 Drozd87 9 weeks SuHx ERA          

Rat 28320896 2017 Liu100 14 weeks SuHx oestrogen  0.38   0.36   -0.01 -1.01* 

Rat 21874543 2012 Fang50 4 weeks PAB RAN -0.99   2.98*  -1.34*   -2.16* 

Rat 21874543 2012 Fang50 4 weeks PAB 

RAN, in 

vitro      -14.63*    

Rat 21874543 2012 Fang50 8 weeks PAB TMZ -1.47*   

2.43 * (10 mM gluc),  

1.99* (5mM gluc).  -1.28* -7.29*  -1.79* 

Rat 21874543 2012 Fang50 8 weeks PAB 

TMZ, in 

vitro      -4.18*    

                

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 17, 2019



 

Figure S1. Models of increased pressure load. 
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Forest plots of right ventricular systolic pressure (A) and Fulton index (B). Data are presented as 

Hedges’ g (95% confidence interval). Combined Hedges’ g are presented as squares: grey 

representing Hedges’ g of a specific model, black representing Hedges’ g of all included studies. Bars 

represent 95% confidence interval. CI = confidence interval. n = number of included animals. i2 = 

level of heterogeneity. 

 

 

  

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 17, 2019



Figure S2. Forest plots of expression of PDK isoenzymes.  
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PDK4 at both mRNA (A) and protein level (B), and PDK1 (C) and PDK2 (D) at protein level. Bars 

represent 95% confidence interval. PDK = pyruvate dehydrogenase kinase. CO = cardiac output, CI = 

cardiac index, TAPSE = tricuspid annular plane systolic movement, RVEF = RV ejection fraction, ↓ = 

decreased, “=” = not statistically significant affected.  95% CI = 95% confidence interval, n = 

number of included animals, i2 = level of heterogeneity, X = not included in meta-analysis. 
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Figure S3. Forest plot MCAD at protein level.  

Bars represent 95% confidence interval. MCAD = medium chain acyl CoA dehydrogenase. CO = 

cardiac output, CI = cardiac index, TAPSE = tricuspid annular plane systolic movement, RVEF = RV 

ejection fraction, ↓ = decreased, “=” = not statistically significant affected.  95% CI = 95% 

confidence interval, n = number of included animals, i2 = level of heterogeneity, X = not included 

in meta-analysis. 
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Figure S4. Regulators of metabolism.  
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Hedges' g (95% CI) 

 

0.4 (-0.83- 1.62) 

-3.84 (-6.08- -1.61) 

-1.61 (-5.76- 2.54) 

 

 

-0.28 (-1.04- 0.48) 

-1.27 (-2.29- -0.26) 

-1.21 (-2.31- -0.11) 

-0.83 (-1.51- -0.15) 

 

 

-1.11 (-2.43- 0.21) 

 

 

-1.02 (-2.5- 0.45) 

 

-0.95 (-1.65- -0.25) 

PGC1α - mRNA B 
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0- 2 .5 2 .5

Study 

SuHx models 

       Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓ (n=12) 
58

  

       Liu 2017, rat, 14 weeks, CO =, CI =, RVEF = (n=11) 
100

  

COMBINED (n=23): p = 0.334, I²= 0.0% 

    

MCT models* 

       Enache 2013, rat, 2 weeks (n=26) 
60
 

       Enache 2013, rat, 4 weeks, compensated (n=17) 
60

  

       Enache 2013, rat, 4 weeks, decompensated (n=15) 
60

  

COMBINED (n=58): p = 0.341, I²= 78.9% 

    

COMBINED (n=81): p = 0.334, I²= 88.6% 

Hedges' g (95% CI) 

 

-4.11 (-6.46- -1.77) 

-2.91 (-4.61- -1.22) 

-3.32 (-4.7- -1.95) 

 

 

0.1 (-0.65- 0.86) 

1.99 (0.85- 3.12) 

-0.2 (-1.22- 0.81) 

0.59 (-0.62- 1.79) 

 

-0.79 (-2.4- 0.82) 

PGC1α - protein D 

PGC1α (mRNA) versus duration of pressure load C  
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Meta-regression of mitochondrial content with degree of RV pressure load  (A). PGC1α gene 

expression(B) and its relation with duration of pressure load shown by meta-regression in a bubble 

plot (C). Forrest plot of PGC1α protein expression (D). Forrest plot of PPARα gene expression (E). 

Data are presented as Hedges’ g. Combined Hedges’ g are presented as squares: grey representing 

Hedges’ g of a specific model, black representing Hedges’ g of all included studies. Bars represent 

95% confidence interval. Bubble size represents relative study precision,  calculation based on 

standard deviation. Black line represents regression line, grey lines represents 95% confidence 

interval. CO = cardiac output, CI = cardiac index, TAPSE = tricuspid annular plane systolic movement, 

RVEF = RV ejection fraction, ↓ = decreased, “=” = not statistically significant affected.  95% CI = 

95% confidence interval, n = number of included animals, i2 = level of heterogeneity. * = 

significantly (p < 0.05) increased compared to SuHx-model. 

  

Study 

Hypoxia models 

       Adrogue 2005, rat, 4 weeks (n=10) 
25

  

       Adrogue 2005, rat, 10 weeks (n=10) 
25
 

       Adrogue 2005, rat, 12 weeks (n=10) 
25
 

       Sharma 2003, rat, 2 days (n=10) 
23
 

       Sharma 2003, rat, 7 days (n=10) 
23
 

       Sharma 2003, rat, 14 days (n=10) 
23
 

COMBINED (n=60): p = 0.741, I²= 84.3% 

  

SuHx models 

       Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓  (n=12) 
58

;  p < 0.0001  

   

PAB models 

       Gomez-Arroyo 2012, rat, 6 weeks, TAPSE ↓  (n=12) 
58

;  p < 0.01  

   

Diseases of PH in human 

       Gomez-Arroyo 2012, PAH, end-stage failure (n=6) 
58

;  p = ns 

   

COMBINED (n=90): p = 0.439, I²= 76.6% 

Hedges' g (95% CI) 

 

0.54 (-0.61-1.68) 

0.21 (-0.91-1.33) 

-4.06 (-6.16--1.96) 

-0.05 (-1.17-1.07) 

-1.49 (-2.79--0.2) 

2.98 (1.26-4.71) 

-0.23 (-1.62-1.15) 

 

 

-0.87 (-2.15-0.41) 

 

 

-0.15 (-1.36-1.06) 

 

 

-1.02 (-2.5-0.45) 

 

-0.36 (-1.28-0.56) 

PPARα - mRNA E 
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