127 research outputs found

    Effect of Topical Anaesthetics on Interstitial Colloid Osmotic Pressure in Human Subcutaneous Tissue Sampled by Wick Technique

    Get PDF
    To measure colloid osmotic pressure in interstitial fluid (COP(i)) from human subcutaneous tissue with the modified wick technique in order to determine influence of topical application of anaesthetics, dry vs. wet wick and implantation time on COP(i).In 50 healthy volunteers interstitial fluid (IF) was collected by subcutaneous implantation of multi-filamentous nylon wicks. Study subjects were allocated to two groups; one for comparing COP(i) obtained from dry and saline soaked wicks, and one for comparing COP(i) from unanaesthetized skin, and skin after application of a eutectic mixture of local anaesthetic (EMLA®, Astra Zeneca) cream. IF was sampled from the skin of the shoulders, and implantation time was 30, 60, 75, 90 and 120 min. Colloid osmotic pressure was measured with a colloid osmometer. Pain assessment during the procedure was compared for EMLA cream and no topical anaesthesia using a visual analogue scale (VAS) in a subgroup of 10 subjects.There were no significant differences between COP(i) obtained from dry compared to wet wicks, except that the values after 75 and 90 min. were somewhat higher for the dry wicks. Topical anaesthesia with EMLA cream did not affect COP(i) values. COP(i) decreased from 30 to 75 min. of implantation (23.2 ± 4.4 mmHg to 19.6 ± 2.9 mmHg, p = 0.008) and subsequently tended to increase until 120 min. EMLA cream resulted in significant lower VAS score for the procedure.COP(i) from subcutaneous tissue was easily obtained and fluid harvesting was well tolerated when topical anaesthetic was used. The difference in COP(i) assessed by dry and wet wicks between 75 min. and 90 min. of implantation was in accordance with previous reports. The use of topical analgesia did not influence COP(i) and topical analgesia may make the wick technique more acceptable for subjects who dislike technical procedures, including children.ClinicalTrials.gov NCT01044979

    Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications

    Get PDF
    Sodium retention and edema are common features of nephrotic syndrome that are classically attributed to hypovolemia and activation of the renin–angiotensin–aldosterone system. However, numbers of clinical and experimental findings argue against this underfill theory. In this review we analyze data from the literature in both nephrotic patients and experimental models of nephrotic syndrome that converge to demonstrate that sodium retention is not related to the renin–angiotensin–aldosterone status and that fluid leakage from capillary to the interstitium does not result from an imbalance of Starling forces, but from changes of the intrinsic properties of the capillary endothelial filtration barrier. We also discuss how most recent findings on the cellular and molecular mechanisms of sodium retention has allowed the development of an efficient treatment of edema in nephrotic patients

    Management of Hypertension in Chronic Kidney Disease

    Get PDF

    Causes and consequences of increased sympathetic activity in renal disease

    No full text
    Much evidence indicates increased sympathetic nervous activity (SNA) in renal disease. Renal ischemia is probably a primary event leading to increased SNA. Increased SNA often occurs in association with hypertension. However, the deleterious effect of increased SNA on the diseased kidney is not only caused by hypertension. Another characteristic of renal disease is unbalanced nitric oxide (NO) and angiotensin (Ang) activity. Increased SNA in renal disease may be sustained because a state of NO-Ang II unbalance is also present in the hypothalamus. Very few studies have directly compared the efficacy of adrenergic blockade with other renoprotective measures. Third-generation beta-blockers seem to have more protective effects than traditional beta-blockers, possibly via stimulation of NO release. Although it has been extensively documented that muscle SNA is increased in chronic renal failure, data on renal SNA and cardiac SNA are not available for these patients before end-stage renal disease. It is also unknown whether additional treatment with third-generation beta-blockers can delay the progression of renal injury and prevent cardiac injury in chronic renal failure more efficiently than conventional treatment with angiotensin-converting enzyme inhibitors only

    Causes and consequences of increased sympathetic activity in renal disease

    No full text
    Much evidence indicates increased sympathetic nervous activity (SNA) in renal disease. Renal ischemia is probably a primary event leading to increased SNA. Increased SNA often occurs in association with hypertension. However, the deleterious effect of increased SNA on the diseased kidney is not only caused by hypertension. Another characteristic of renal disease is unbalanced nitric oxide (NO) and angiotensin (Ang) activity. Increased SNA in renal disease may be sustained because a state of NO-Ang II unbalance is also present in the hypothalamus. Very few studies have directly compared the efficacy of adrenergic blockade with other renoprotective measures. Third-generation beta-blockers seem to have more protective effects than traditional beta-blockers, possibly via stimulation of NO release. Although it has been extensively documented that muscle SNA is increased in chronic renal failure, data on renal SNA and cardiac SNA are not available for these patients before end-stage renal disease. It is also unknown whether additional treatment with third-generation beta-blockers can delay the progression of renal injury and prevent cardiac injury in chronic renal failure more efficiently than conventional treatment with angiotensin-converting enzyme inhibitors only.</p
    • …
    corecore