216 research outputs found

    Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling

    Get PDF
    Cell-based, mathematical models help make sense of morphogenesis—i.e. cells organizing into shape and pattern—by capturing cell behavior in simple, purely descriptive models. Cell-based models then predict the tissue-level patterns the cells produce collectively. The first step in a cell-based modeling approach is to isolate sub-processes, e.g. the patterning capabilities of one or a few cell types in cell cultures. Cell-based models can then identify the mechanisms responsible for patterning in vitro. This review discusses two cell culture models of morphogenesis that have been studied using this combined experimental-mathematical approach: chondrogenesis (cartilage patterning) and vasculogenesis (de novo blood vessel growth). In both these systems, radically dif- ferent models can equally plausibly explain the in vitro patterns. Quantitative descriptions of cell behavior would help choose between alternative models. We will briefly review the experimental methodology (microfluidics technology and traction force microscopy) used to measure responses of individual cells to their micro-environment, including chemical gradients, physical forces and neighboring cells. We conclude by discussing how to include quantitative cell descriptions into a cell-based model: the Cellular Potts model

    Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone.

    Get PDF
    Angiogenesis, the growth of new blood vessels, is necessary for cancerous tumors to keep growing and spreading. Suppression of abnormal angiogenesis may provide therapeutic strategies for the treatment of angiogenesis-dependent disorders. In the present study, we describe the in vitro and in vivo anti-angiogenic activities of the flavonoid precursor 4-hydroxychalcone (Q797). This chalcone (22μg/ml) suppressed several steps of angiogenesis, including endothelial cell proliferation, migration and tube formation without showing any signs of cytotoxicity. Moreover, we found a selective effect on activated endothelial cells, in particular with resting endothelial cells and the human epithelial tumor cell lines (HeLa, MCF-7, A549). In addition, Q797 was able to modulate both vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (FGF)- induced phosphorylation of extracellular signal-regulated kinase (ERK)-1/-2 and Akt kinase. It did not influence the nuclear translocation of p65 subunit of the nuclear factor-κB (NF-κB) when human endothelial cells were stimulated with tumor necrosis factor (TNF)-α. Taken together this indicates that the Q797-mediated inhibition of in vitro angiogenic features of endothelial cells is most likely caused by suppression of growth factor pathways. The potent inhibitory effect of Q797 on bFGF-driven neovascularization was also demonstrated in vivo using the chick chorioallantoic membrane (CAM) assay. In summary, this chalcone could serve as a new leading structure in the discovery of new potent synthetic angiogenesis inhibitors

    Could recombinant insulin compounds contribute to adenocarcinoma progression by stimulating local angiogenesis?

    Get PDF
    Negative effects on the progression of adenocarcinomas by hyperinsulinaemia and the insulin analogue glargine (A21Gly,B31Arg,B32Arg human insulin) have recently been suggested. Most actions of this insulin analogue have hitherto been explained by direct stimulation of growth potential of neoplastic cells and by its IGF-1 related properties. However, insulin-stimulated angiogenesis could be an additional factor involved in tumour progression and clinical outcomes associated with cancer. Five types of human adenocarcinoma (breast, colon, pancreas, lung and kidney) were evaluated for the presence of insulin receptors (IRs) on angiogenic structures. In an in vitro angiogenesis assay, various commercially available insulin compounds were evaluated for their potential to increase capillary-like tube formation of human microvascular endothelial cells (hMVEC). Insulin compounds used were: human insulin, insulin lispro (B28Lys,B29Pro human insulin), insulin glargine and insulin detemir (B29Lys[e-tetradecanoyl],desB30 human insulin). Insulin receptors were found to be strongly expressed on the endothelium of microvessels in all evaluated adenocarcinomas, in addition to variable expression on tumour cells. Low or no detectable expression of IRs was seen on microvessels in extratumoral stroma. Incubation with commercially available insulin compounds increased capillary-like tube formation of hMVEC in vitro. Our results suggest that all tested insulin compounds may stimulate tumour growth by enhancing local angiogenesis. Future studies need to confirm the association between insulin therapy in type 2 diabetes and tumour progressio

    A local uPAR-plasmin-TGFβ1 positive feedback loop in a qualitative computational model of angiogenic sprouting explains the in vitro effect of fibrinogen variants

    Get PDF
    In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear what mechanisms regulate the number and the positions of the vascular-like structures in cell cultures. To address this question, we propose a mechanistic simulation model of endothelial cell migration and fibrin proteolysis by the plasmin system. The model is a hybrid, cell-based and continuum, computational model based on the cellular Potts model and sets of partial-differential equations. Based on the model results, we propose that a positive feedback mechanism between uPAR, plasmin and transforming growth factor β1 (TGFβ1) selects cells in the monolayer for matrix invasion. Invading cells releases TGFβ1 from the extracellular matrix through plasmin-mediated fibrin degradation. The activated TGFβ1 further stimulates fibrin degradation and keeps proteolysis active as the sprout invades the fibrin matrix. The binding capacity for TGFβ1 of LMW is reduced relative to that of HMW. This leads to reduced activation of proteolysis and, consequently, reduced cell ingrowth in LMW fibrin compared to HMW fibrin. Thus our model predicts that endothelial cells in LMW fibrin matrices compared to HMW matrices show reduced sprouting due to a lower bio-availability of TGFβ1

    CD34+ cells home, proliferate, and participate in capillary formation, and in combination with

    Get PDF
    Objective - Emerging evidence suggests that human blood contains bone marrow (BM)-derived endothelial progenitor cells that contribute to postnatal neovascularization. Clinical trials demonstrated that administration of BM-cells can enhance neovascularization. Most studies, however, used crude cell populations. Identifying the role of different cell populations is important for developing improved cellular therapies. Methods and Results - Effects of the hematopoietic stem cell-containing CD34+ cell population on migration, proliferation, differentiation, stimulation of, and participation in capillary-like tubule formation were assessed in an in vitro 3-dimensional matrix model using human microvascular endothelial cells. During movement over the endothelial monolayer, CD34+ cells remained stuck at sites of capillary tube formation and time- and dose-dependently formed cell clusters. Immunohistochemistry confirmed homing and proliferation of CD34+ cells in and around capillary sprouts. CD34+ cells were transduced with the LNGFR marker gene to allow tracing. LNGFR gene-transduced CD34 + cells integrated in the tubular structures and stained positive for CD31 and UEA-1. CD34+ cells alone stimulated neovascularization by 17%. Coculture with CD34- cells led to 68% enhancement of neovascularization, whereas CD34- cells displayed a variable response by themselves. Cell-cell contact between CD34+ and CD34- cells facilitated endothelial differentiation of CD34+ cells. Conclusions - Our data suggest that administration of CD34+-enriched cell populations may significantly improve neovascularization and point at an important supportive role for (endogenous or exogenous) CD34- cells. © 2005 American Heart Association, Inc. Chemicals / CAS: nitric oxide, 10102-43-9; Antigens, CD34; Biological Marker

    Unfractionated and low molecular weight heparin affect fibrin structure and angiogenesis in vitro.

    Get PDF
    Cancer patients treated for venous thromboembolism with low molecular weight heparin (LMWH) have a better survival rate than patients treated with unfractionated heparin (UFH). Because fibrin-associated angiogenesis is an important determinant in the progression and metastasis of many solid tumors, the effects of heparins on in vitro angiogenesis were investigated. Both UFH and LMWH inhibited bFGF-induced proliferation of human microvascular endothelial cells (hMVECs) to the same the extent (36-60%). VEGF(165)-induced proliferation was inhibited to a to a lesser extent (19-33%). Turbidity measurements and electron microscopy showed that the presence of LMWH during polymerization of the fibrin matrix led to a more transparent rigid network with thin fibrin bundles, whereas the presence of UFA resulted in a more opaque more porous network with thick fibrin fibers, We used a human in vitro angiogenesis model, which consisted of hMVECs seeded on top of a fibrin matrix, and stimulated the cells with basic fibroblast growth factor plus tumor necrosis factor Lu to induce capillary-like tubular structures, The formation of capillary-like tubular structures was retarded with matrices polymerized in the presence of LMWH (46% inhibition compared with a control matrix for both 1.5 and 10 units/ml LMWH), whereas matrices polymerized in the presence of UFH facilitated tubular structure formation (72 and 36% stimulation compared with a control matrix for 1.5 and 10 units/ml UFH, respectively). Similar results were obtained for cells stimulated with vascular endothelial growth factor plus tumor necrosis factor alpha. These data demonstrate the inhibitory effect of heparins on proliferation of hMTECs and provide a novel mechanism by which LMWH may affect tumor progression, namely reduced ingrowth of microvascular structures in a fibrinous stroma matrix by rendering it less permissive for invasio
    • …
    corecore