513 research outputs found

    Local and nonlocal contributions to the linear spectroscopy of light-harvesting antenna systems

    Get PDF
    In this paper the circular dichroism and absorption spectra of the LH2 complex of Rhodopseudomonas acidophila, for which the atomic structure is known, are analyzed. We show that an analysis based on the distribution of the excitations in real space, and their correlations, to unravel the relation between the atomic structure of the light-harvesting complex and its excitonic properties, is particularly successful. Starting from molecular expressions for the linear susceptibility, we demonstrate that linear spectra can be viewed as originating from the product of coherence correlation functions and geometric structure factors. Effects of homogeneous and inhomogeneous broadening can be incorporated in a natural way and lead to a definition of exciton length as the distance over which coherence correlation functions decay. 1

    Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression

    Get PDF
    Individual differences in aggressive behaviour have been linked to variability in central serotonergic activity, both in humans and animals. A previous experiment in mice, selectively bred for high or low levels of aggression, showed an up-regulation of postsynaptic serotonin-1A (5-HT1A) receptors, both in receptor binding and in mRNA levels, in the aggressive line. The aim of this experiment was to study whether similar differences in 5-HT1A receptors exist in individuals from a random-bred rat strain, varying in aggressiveness. In addition, because little is known about the functional consequences of these receptor differences, a response mediated via postsynaptic 5-HT1A receptors (i.e., hypothermia) was studied both in the selection lines of mice and in the randomly bred rats. The difference in receptor binding, as demonstrated in mice previously, could not be shown in rats. However, both in rats and mice, the hypothermic response to the 5-HT1A agonist alnespirone was larger in aggressive individuals. So, in the rat strain as well as in the mouse lines, there is, to a greater or lesser extent, an enhanced sensitivity of postsynaptic 5-HT1A receptors in aggressive individuals. This could be a compensatory up-regulation induced by a lower basal 5-HT neurotransmission, which is in agreement with the serotonin deficiency hypothesis of aggression.

    Behavioural and physiological consequences of acute social defeat in growing gilts: effects of the social environment

    Get PDF
    Endocrine, behavioural and immunologic processes, together with body growth, were evaluated in gilts that were defeated at 10 weeks of age in resident-intruder tests. Immediately after defeat, gilts were either separated from or reunited with a familiar conspecific (litter-mate; always a barrow). Gilts were assigned to one of four treatments: (a) DI: defeat, followed by isolation (separation from original litter-mate; n=8); (b) I: no defeat, isolation (control group; n=9); (c) DP; defeat, followed by pair-housing (reunion with original litter-mate; n=8); and (d) P: no defeat, pair-housing (control group; n=8). The following general conclusions were derived: (1) social defeat caused pronounced short-term elevations in hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary activities, and of prolactin levels. Moreover, as soon as 1 h after defeat, percentages of blood lymphocytes and neutrophilic granulocytes were, respectively, decreased and increased; (2) social defeat had some long-lasting influence on behaviour and physiology, but isolation predominantly determined responses in the longer term. Defeat, as well as isolation, resulted in increased cardiovascular activities compared to P controls, as observed in a novel object test (NOT: +7 days) and an aversion test (AVT: +14 days). Moreover, defeated as well as isolated gilts did not habituate to a repeated novel environment test (NET: -7, +2 and +7 days) in terms of frequencies of vocalising, whereas P controls did. Isolation, through the separation from any other pig, was responsible for the other observed long-term characteristics, which developed progressively. Isolated gilts showed high mobilities and high cortisol responses in the repeated NET (+7 days), not being habituated. This contrasted the reactions of pair-housed gilts, which were much reduced. In addition to their high cardiovascular activities in the NOT and the AVT, isolated gilts also displayed higher heart rates in the repeated NET and during human presence following the NOT, compared to pair-housed gilts. Finally, isolated gilts were more inhibited to approach a novel object (in the NOT) than pair-housed pigs; and (3) stress responses of defeated gilts were modulated by the subsequent social environment. Stimulation of the HPA-axis (plasma- and salivary cortisol) was prolonged in those defeated gilts which were isolated (observed in the first hour). Changes in leucocyte subsets were still observed after 3 days in DI, but were `normalised' within 1 day in DP gilts. Two days after defeat, habituation to the repeated NET in terms of mobility and salivary cortisol responses occurred in control and DP gilts, but not in DI gilts. We argue that these effects of the social environment shortly after defeat were related to a stress-reducing effect of a stable social relationship, i.e. social support.

    Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study

    Get PDF
    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with a novel approach which combines molecular dynamics (MD) simulations with quantum chemistry (QC) calculations. The MD simulations of an LH-II complex, solvated and embedded in a lipid bilayer at physiological conditions (with total system size of 87,055 atoms) revealed a pathway of a water molecule into the B800 binding site, as well as increased dimerization within the B850 BChl ring, as compared to the dimerization found for the crystal structure. The fluctuations of pigment (B850 BChl) excitation energies, as a function of time, were determined via ab initio QC calculations based on the geometries that emerged from the MD simulations. From the results of these calculations we constructed a time-dependent Hamiltonian of the B850 exciton system from which we determined the linear absorption spectrum. Finally, a polaron model is introduced to describe quantum mechanically both the excitonic and vibrational (phonon) degrees of freedom. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function are derived from the MD/QC simulations. It is demonstrated that, in the framework of the polaron model, the absorption spectrum of the B850 excitons can be calculated from the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined MD/QC simulations. The obtained result is in good agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF file of the paper is available at http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd
    corecore