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In this paper the circular dichroism and absorption spectra of the LH2 complex ofRhodopseudomonas
acidophila, for which the atomic structure is known, are analyzed. We show that an analysis based on the
distribution of the excitations in real space, and their correlations, to unravel the relation between the atomic
structure of the light-harvesting complex and its excitonic properties, is particularly successful. Starting from
molecular expressions for the linear susceptibility, we demonstrate that linear spectra can be viewed as
originating from the product of coherence correlation functions and geometric structure factors. Effects of
homogeneous and inhomogeneous broadening can be incorporated in a natural way and lead to a definition
of exciton length as the distance over which coherence correlation functions decay.

1. Introduction

In photosynthesis two fundamental processes play a key role
in converting solar energy into free chemical energy: energy
absorption and energy transfer in light-harvesting (LH) com-
plexes and charge separation in the reaction center (RC).1,2

Though the elucidation of the crystal structure of LH2 of
Rhodopseudomonas acidophilaby Cogdell and co-workers3 was
a major breakthrough, spectroscopic properties of LH2 and the
energy-transfer mechanism are still not fully understood (see,
for example, Pullerits and Sundstro¨m4 and Fleming and Van
Grondelle5 for a discussion).

Several attempts were made recently to obtain the linear
spectroscopic properties of LH2 ofRps. acidophilafrom the
geometric structure. Thus, Sauer6 successfully calculated the
absorption (OD) spectrum from the LH2 structure in combina-
tion with extended charge distributions on the pigments.
Calculation of the circular dichroism (CD) spectrum proved to
be more difficult, as a consequence of the canceling effects due
to line-broadening mechanisms. Koolhaas et al.7 gave a similar
analysis, albeit with point transition dipole moments on the
pigments, and they came to the conclusion that the aforemen-
tioned canceling effects were less important when an energy
difference between theR- and â-bound chromophores was
introduced. This led to a prediction of both the OD and CD
spectrum and an interpretation of the origin of the red-shifted
zero crossing of the CD spectrum with respect to the absorption
maximum. It was concluded that interactions among BChl’s over
more than half the ring had to be taken into account in order to
explain this crucial feature. Some of the assumptions in the
above-mentioned papers were confirmed by Alden et al.8 who
showed, based on ab initio calculations of the BChl’s only, one
of which is slightly bent, that indeed an energy difference
betweenR- and â-bound pigments can occur. An additional
reason for the difference in energy can be found in the

dissimilarity of the protein environment. In particular it is
thought that the 2-acetyl carbonyl H-bonds between BChla and
the R-Tyr-44 andR-Tyr-45 can give rise to a considerable red
shift in the absorption maximum.9,10 Another result of the
calculations done by Alden et al.8 is that the effect of the charge-
transfer states on the steady-state linear spectroscopy is negli-
gible.

A recent study11 of a B800-free LH2 complex ofRhodobacter
sphaeroidesled to an accurate set of parameters that quantita-
tively explained the absorption and CD features of the B850-
ring. The geometric structure of this ring, with slightly different
R- and â-pigments, gives rise to so-called Davidov splitting,
which leads to weak spectroscopic effects in the 770-800 nm
region. These contributions were indeed observed and could
hence be used to obtain a direct estimate of the excitonic
interaction between neighboring pigments, which was deter-
mined to be approximately 300 cm-1 in Rb. sphaeroides.

In this paper we present a detailed analysis of the linear
spectroscopic properties of the highly symmetric rings of
pigments. These include OD, CD, and also linear dichroism
(LD) on oriented samples. We aim at understanding detailed
features of the spectra, which include peak positions and relative
magnitudes, zero crossings of the CD spectra, and positions of
change in the LD spectra.

This paper consists of two distinct parts, which taken together
give a general description of the linear spectroscopic features
of ring-shaped antenna complexes, in the sense that the spectra
can be used to make predictions about the structure of LH
antennae complex and vice versa, and the structure can be used
to calculate the spectra.

The first part concerns the description of LH complexes as
interacting rings. As an example we consider LH2 ofRps.
acidophila. The crystal structure of this complex was obtained
with a resolution of 2.5 Å at room temperature3 and has aC9

symmetry axis. It shows a highly organized arrangement of two
concentric rings of polypeptides, theR-polypeptides inside and
the â-polypeptides outside, and bound to these two vertically
displaced rings of bacteriochlorophylla (BChla). One ring
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comprising nine BChla’s is called B800 since its main absorp-
tion is around 800 nm. The other ring (B850) consists of 18
BChla’s, sandwiched between theR- andâ-polypeptide rings,
and absorbs mainly around 870 nm at 4 K and 855 nm at room
temperature. In fact this B850 ring itself can be viewed as two
interlocking rings, namely, a ring ofR-bound chromophores and
a ring ofâ-bound chromophores. It can therefore be viewed as
a ring of dimers.12 However, in this paper we will develop a
description in which the B850 ring can best be considered as a
dimer of rings. The coupling between the rings can be expressed
analytically in the coupling between all monomers, not just
nearest neighbors. This picture leads to an easy extension to
more complex cases. After all, even in LH2 the BChla’s are
not the only rings; the carotenoids in the structure form yet
another ring, and other transitions such as theQx transition of
the monomers can be resolved separately first and subsequently
be coupled to theQy ring. This leads to the view that the OD,
CD, and LD features can be understood as resulting from
properties of the ring as a whole, which in turn derive directly
from the position and orientation of the monomers in the ring.

So far we considered the LH2 system as an ideal, unperturbed
set of rings. In reality external perturbations (inhomgeneities)
destroy the ideal ring structure. However, we show that, on
average, the excitonic structure described above remains intact
and that linear spectroscopic features can be understood as
probes of this structure. Therefore, in the second part of this
paper, we calculate the first-order response of the antenna system
to an external light field, based on the so-called real space
description of density matrices developed by Mukamel et al.13,14

It is shown that the linear susceptibility can be broken down
into two parts: a structural part, independent of position and
shape of absorption lines but dependent on the geometry of the
ring, and frequency-dependent coherence correlation functions
of which the specific form is related to homogeneous and
inhomogeneous broadening mechanisms. We show that the
spectra can be viewed as the result of probing these correlation
functions by different structure functions. For isotropic samples
there are three structure functions,15 two of which can be
measured independently, the first one related to OD, the second
to CD. It will be shown that these probe the coherence
correlations of different parts of the ring: OD mainly nearest
neighbors, CD mainly pigments a quarter of the ring apart. For
oriented samples there is in addition LD, which gives all
pigments equal weight.

The description presented in this paper also sheds some light
on the problem of exciton length, the number of pigments over
which the excitation is delocalized, and the related property of
spectroscopic unit, the minimal number of coupled pigments
needed to explain spectroscopic features. The size of the exciton
was interpreted as the size of a spectroscopic unit as was pointed
out in theoretical studies on steady-state spectroscopy,6,7,16 in
which the spectroscopic unit was defined as a subunit of the
LH2 system, large enough to explain all linear spectroscopic
properties. A correct simulation of the CD spectrum requires a
spectroscopic unit of at least half the size of the ring. Estimates
of the size of the exciton based on various experiments vary
between a dimer and at least half the LH2 ring.17-25 The time-
dependent properties of the antenna systems are interpreted in
terms of a small hopping exciton: excitation of the system
rapidly leads to a localized quasi particle, which by a random
walk hops to neighboring sites26-30 and eventually to the special
pair of the RC. The localization is thought to be the result of
energy disorder and/or electron-phonon coupling.31,32

The real space description, however, will naturally lead to a

definition of the exciton length based on the correlation length,
which is the determining factor in interpreting spectra. This
model is very useful because it is applicable to localized and
delocalized excitons. We will show that OD spectra are
determined mainly by short-range correlations, whereas in LH1
and LH2 longer range correlations are important in explaining
CD spectra. Although in this paper we limit ourselves to a
simple model for the dynamics of the excitonic states (they all
decay to the ground state with the same relaxation rate), we
show that the effects of diagonal disorder, which is static, and
homogeneous line width, which is of a dynamical nature, on
the size of the exciton are indeed similar. One of the results
presented in this paper is that inhomogeneous broadening based
on diagonal disorder does not fully destroy the averaged
excitonic structure of the rings. Simply stated we can say that
with the given parameters on the average the ring displays the
original C9 symmetry and that the coherence correlation
functions clearly exhibit features related to this symmetry. Phase
relations remain valid, although amplitudes of longer ranged
coherences decay. Thus diagonal disorder of the magnitude
considered in this paper does not lead to complete localization.

It is possible to incorporate more sophisticated models for
the time-dependent properties of the system, such as decay to
the lowest excitonic state within the exciton manifold. However,
these models have minor effects on the steady-state spectro-
scopic properties described in this paper.

The organization of this paper is as follows. In the next
section we will give a brief review of the diagonalization of
the Hamiltonian for ring systems and show that rings of dimers
can also be interpreted as dimers of rings, with the simplification
that a full ring only consists of two levels, one doubly
degenerate, and that only excitons with the same wave number
couple. The subsequent section is devoted to the real space
description of the density matrix as applied to ring systems.
The separation into a structural and a frequency-dependent part
is effected, and the properties of these two parts are further
elucidated in separate sections.

2. Hamiltonian of the System and Excitonic States

We begin by considering a ring ofN excitonically coupled
monomers withCN symmetry. Although it is possible to get
the full excitonic structure, including multiple excitations, for
such a system, this is a rather involved procedure, which is only
useful when nonlinear forms of spectroscopy are used to probe
the system. The full solution will be presented elsewhere; here
we restrict ourselves to singly excited states, which is sufficient
for the calculation of the linear susceptibilityø(1).

The Hamiltonian of the system with excitonic interaction is
given by

whereN is the number of pigments and withVnm the coupling
strength between monomern andm.

We note that owing to the symmetry of the systemVnm only
depends on|n - m| so that we can writeVnm ≡ V|n-m| and
VN-m ) Vm. These properties allow the Hamiltonian to be
diagonalized by the well-known transformation to excitonic
states

H ) ε ∑
n)1

N

|n〉 〈n| +
1

2
∑

n,m)1

N

′ Vnm [|n〉 〈m| + |m〉 〈n|] (1)

|ψk〉 )
1

xN
∑
n)1

N

e2πink/N |n〉 (2)
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with the result

where

For theQy transitions in theR- andâ-ring the nearest-neighbor
interaction is negative owing to the almost tangential orientation
of the transition dipoles, which makesEN the lowest energy,
and the next level up isE1 ) EN-1.

It is obvious from eq 4 thatEN-k ) Ek, so that every level
except k ) 0 and (possibly)k ) N/2 is degenerate. More
important is that the transition moments to the excited states
are all zero, except those to levelk ) 0, and those to the
(degenerate) levelsk ) 1 andk ) N - 1. As is well-known,
the transition moment to the lowest excited state is small and
in the direction perpendicular to the B850 plane, and the
transition moments to the next excited state are in the aggregate
plane and much larger, approximatelyxN times the monomer
moment.

For the explanation of CD, it is useful to introduce magnetic
transition moments to the excitonic states,mbk ) ∑n)1

N rbn ×
µbe-2πikn/N, which also transform as vectors under proper rotations
and consequently have properties similar to those of the electric
dipole moments. In contrast to the electric moments for B850
of LH2, the magnetic moment has a large component in the
aggregatez direction, since bothµbn and rbn are almost in the
xy-plane of the ring.

For a ring of dimers, or a ring of three-level systems (if we
also take theQx transition into account), the above description
is easily extended. In fact the single-exciton level structures of
these two systems are equivalent, since we can always diago-
nalize the dimer first to get a three-level system. For LH2 the
dimers are actually a better starting point than the monomers,
since theR- and â-bound BChla’s do not have the same
orientation, so the B850 ring of the LH2 has noC18 symmetry
anyway. In addition this allows us to give different site energies
to theR- andâ-bound chromophores. The same is true for LH1,
a 16-fold symmetric ring of B820 dimers.33,34

For a ring ofN dimers we introduce the basis one-exciton
states|n, ν〉, wheren runs from 1 toN, denoting the position of
the dimer, andν can be 1 (R) or 2 (â), denoting the monomers
within the dimer; see Figure 1.

The dimer Hamiltonian is then given by

whereVnν,nν′ is the interaction between pigments within a dimer.
The Hamiltonian of the ring then becomes

and the transformation to excitonic states corresponding to eq
3 is

This transformation now leads to the following Hamiltonian
in the exciton basis

with

Again we see thatṼνν′(k) ) Ṽν′ν
/ and Ṽνν′(N - k) ) Ṽνν′(k),

so that every level, except fork ) N and, forN even,k ) N/2,
is still degenerate. For a complete discussion regarding the group
theoretical representations of theC9 group and its consequences
for the spectroscopy of antenna systems, see ref 35.

Thus, for every value ofk we have reduced the problem to
diagonalization of a 2× 2 matrix, which is fully equivalent to
the problem of two interacting monomers in a dimer, where a
further simplification occurs since the dipole moments belonging
to the “monomers”|ψk, ν〉 are parallel. This allows us to give
a picture of the interaction between the rings, which we will
frequently use in the subsequent sections to give insight into
the origin of spectral features. As an example we take thek )
0 level. TheṼ12(0) interaction is dominated by theV11,12 term,
which for LH2 is positive. From the results given in the
Appendix, it can be inferred that if the interaction energy is
positive, the transition moments add in the high-energy state,
(with the proper coefficients) and are subtracted in the lowest
energy state. Therefore, in LH2 the highest excitonic B850 state
(around 789 nm) will have considerably morez-character then
the lowest excitonic state (around 859 nm). The total energy

H ) ∑
k)0

N-1

Ek |ψk〉 〈ψk| (3)

Ek ) ε + Ṽ(k) ≡ ε + ∑
n)1

N

Vne
2πikn/N (4)

Hn ) ∑
ν)1

2

εν |n, ν〉 〈n, ν| +
1

2
∑

ν,ν′)1

2

′ Vnν,nν′ [|n, ν〉 〈n, ν′| +

|n, ν′〉 〈n, ν|] (5)

H ) ∑
n)1

N

∑
ν)1

2

εν |n, ν〉 〈n, ν| +
1

2
∑

n,m)1

N ν,ν′)1

2
′ Vnν,mν′ [|nν〉

〈mν′| + |m, ν′〉 〈n, ν|] (6)

Figure 1. Positions and orientations of the transition dipole moments
in the plane of the B850 ring in LH2 ofRps. acidophila. Not shown is
the slight deviation (5-7°) in the positivez-direction of both theR-
and â-transition dipole moments, and the smallz-components of the
Mg atoms ((0.02 nm). Throughout this paper we use the convention
that odd-numbered atoms correspond toR-bound pigments and even-
numbered atoms toâ-bound pigments. In the unit cell notation (nν)
used in sections 2 and 3, the (n1)-pigment is anR-chromophore located
at position 2n - 1, and the (n2)-pigment aâ-chromophore at position
2n.

|ψk, ν〉 )
1

xN
∑
n)1

N

e2πikn/N |n, ν〉 (7)

H ) ∑
k)0

N-1

∑
ν,ν′)1

2

(ενδν,ν′ + Ṽνν′(k)) |ψk, ν〉 〈ψk, ν′| (8)

Ṽνν′(k) ) ∑
n)1

N

V1ν,nν′ e2πi(n-1)k/N (9)
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splitting is approximately equal to 2Ṽ12(0), sinceṼ11(0) ≈ Ṽ22-
(0). This also determines the total width of the exciton manifold.

For completeness, we give in Table 1 a list of values of the
interaction energies, site energies, and other relevant parameters
used in the simulations later in this paper.

Before presenting a more detailed analysis of spectral features,
we now first turn to the nonlocal description of the density
matrix, which allows us to discuss structural issues, such as
the ones given in this section, and problems related to
homogeneous and inhomogeneous broadening separately.

3. Real Space Formulation of the Linear Susceptibility

In a real space, or nonlocal, formulation of the susceptibilities,
it is necessary to keep track of the positions of the transition
dipole moments of the system. This allows us to take into
account the variation of the electric field over the pigments in
the system. This is important in understanding excitonic CD
spectrosopy and energy transfer in extended systems. An
extensive treatment and application to naphthalene was given
in ref 14, and here we restrict ourselves to the linear suscepti-
bilities and apply it to the ring systems discussed in the previous
sections. A direct application of the theory (ref 13, Chapter 5)
to the system at hand gives for the linear susceptibility in the
coordinate frame of the ring

where, as in the previous section, Latin indices indicate unit
cells, while the indicesν and ν′ indicate monomers within a
dimer. The indexγ now indicates the highest (γ ) 1) and lowest
(γ ) 2) energy level within the excitonic statek, due to Davidov
splitting.

In this expressionµbnν are the transition moments andrbnν the
positions of the chromophores, as introduced in the previous
section, and the coefficientsCnν

kγ are given for the perfect ring
in the Appendix. The frequenciesωkγ are equal to the energy
eigenvalues for the system divided byp: ωkγ ) εγ(k)/p; see
the Appendix. The Green functionsG(ω0 - ωkγ), which reflect
the dynamical behavior of the system, depend on these frequen-
cies as well as on the model for homogeneous broadening; in
this work Gaussian profiles are used to calculate the high-
temperature spectra (ref 13, Chapter 8). It is clear from eq 10
that the susceptibility now depends on the positionsrbandrb′, so
that an external field acting at positionrb can generate polariza-
tion at a different positionrb′.

The absorption intensity is now given by

The result of isotropic averaging up to lowest order ink0L, where
k0 is the wavenumber of the incident light andL the extension
of the system, is15,16

whereω0 is the frequency of the incident light. To obtain this
expression we also assumed that the light field can be
represented by plane waves with slowly varying amplitudeEB0-
(t)

whereEB0(t) is furthermore given by

In this last equationεb andεb′ are two orthogonal unit vectors in
the plane perpendicular to the direction of propagationkB0 of
the light. Polarization properties depend on the value ofφ (ref
36, Chapter 8).

We note that all optical activity of the sample originates from
the contribution of the second term in parentheses in eq 12 to
the absorption intensity. For linearly polarized lightφ ) 0, and
the second term does not contribute.

Homogeneous and Inhomogeneous Broadening.The effects
of homogeneous and inhomogeneous broadening must be
incorporated into eq 12. For homogeneous broadening we use
a simple model. At high temperatures the rapid fluctuations of
the modes of the surrounding medium that couple to electronic
transitions give rise to Gaussian line shapes.13 Thus we assume
that the Green functionsG have the following frequency
dependence

for each of the excitonic states. The homogeneous line width
σ, which depends on the temperature and the Stokes shift, is
assumed to be the same for all states. This assumption is
probably not valid for the lowest excitonic level; it is generally
assumed that this state has a considerably longer lifetime than
the other excitonic states18,37,38at least at low temperatures. It
is of course possible to incorporate more sophisticated models
for the exciton-phonon interaction or other relaxation pathways
to use other excitonic homogeneous line shapes in eq 15. In
general the homogeneous line width is larger than the energy
difference between the excitonic levels, especially for the lower
states where the levels are close together.

The origin of inhomogeneous broadening is static disorder,
and we assume that its main effect is on the ground-state energy
of the monomers. This so-called diagonal disorder can then be
modeled by giving each of the monomer levels a random energy
contribution, chosen from a Gaussian distribution with standard
deviation ∆. This means in fact that we add a random
HamiltonianHr to eq 5 of the form

TABLE 1: Values of Physical Parameters Used in the
Simulationsa

quantity value

Qy transition moment 6.3 D
R-R interaction: V1R,2R -52 cm-1

R-â interaction: V1R,1â 396 cm-1

â-R interaction: V1â,2R 300 cm-1

â-â interaction: V1â,2â -36 cm-1

relative dielectric constantε 1.7
R-site energy 12 300 cm-1 (813 nm)
â-site energy 12 000 cm-1 (833 nm)

a The interaction energies were calculated directly from the structure,
with the given value of the transition dipole moment. Values given are
for ε ) 1. The relative dielectric constant and site energies given in
this table give good fits of the absorption and CD spectra.

ø( rb, rb′, ω) ) -
1

p
∑
k,γ

∑
n,ν

∑
m,ν′

Cnν
kγ Cmν′

kγ/ G (ω0 -

ωkγ) µbnνµbmν′ δ( rb - rbnν) δ( rb′ - rbmν′) (10)

I(ω) ) ω
π ∫ drb ∫ drb′ EB( rb, ω)‚Im [ø( rb, rb′, ω)]‚EB( rb′, ω)

(11)

I(ω0)

∫ dt E0
2(t)

) -
ω0

3πp
∑
k,γ

G(ω0 - ωkγ) ∑
n,ν;m,ν′

Cnν
kγ Cmν′

kγ/

(µbnν‚µbmν′ - 2(µbnν × µbmν′)‚( rbnν - rbmν′) k0 sinφ) (12)

EB( rb, t) ) EB0(t)e
ikB0‚ rb--iω0t + EB0

/(t)e-ikB0‚ rb+iω0t (13)

EB0(t) ) E0(t) [ εb + eiφ
εb′] (14)

G(ω0 - ωkγ) ) 1

σx2π
e-(ω0-ωkγ)2/2σ2

(15)
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and numerically diagonalize the resulting system. This has two
effects: the eigenfrequenciesωkγ and the coefficientsCnν

kγ

become dependent on the parameter set{λ}. Although it is
possible to keep the|ψk, γ〉 states as the basis and to induce
coupling between these electronic states as a result of the
disorder,35 for large disorder the excitonic structure becomes
mixed, and the nature of these states is lost. In the following
we therefore leave out the indexγ, and letk run over all the
states resulting from the diagonalization ofH + Hr. Note that
the indexk now runs from 0 to 2N - 1.

Equation 12 then becomes an average over all possible
realizations

with coherence correlation functions

where 〈‚‚‚〉 is an average over the diagonal disorder. These
functions are a measure of the nonlocality of the system, in
other words, the correlation between an excitation, or coherence,
of pigmentnν at positionrbnν and another one atrbmν′. These
correlation functions can be probed by various spectrocopic
methods.

The correlation functions,Fnν,mν′(ω), are the measurable
quantities in combination with a probe and structure-dependent
factor. They are obtained by calculating eigenvaluesωk and
coefficientsCnν

k and summing over all excitonic states. This
latter point is rather crucial: we do not keep track of each
excitonic state this way, but consider the energy (frequency) at
which it occurs as more relevant. After all, experimentally
systems are probed at a given frequency, and in general one
does not know whether the state of an individual aggregate is
the lowest state or some higher excitonic state, especially when
there is considerable overlap between the excitonic states, i.e.,
when∆/V > 1 andσ/V ≈ 1.

Two limiting cases, small and large homogeneous/inhomo-
geneous width, give rise to simpler expressions. For small∆,
i.e., ∆/V , 1, we can study the effect of the disorder on the
exciton functions in terms of the unperturbed excitonic states.35

The unperturbed Hamiltonian is diagonal in this representation,
and the contribution to the random Hamiltonian has two
effects: all diagonal elements, the eigenenergies, get an extra
contribution{1/(2N)}∑iλi, and all nondiagonal elements also
become nonzero, introducing a coupling between the excitonic
states. The diagonal part does not influence the coefficients,
and the off-diagonal part has only second-order effects. We
therefore assume that we can make the following approximation
for the average over all inhomogeneities if the disorder is small:

Furthermore, the dominant effect on the frequency is a shift:
ωk f ωk + {1/(2N)}∑iλi. SinceG is a Gaussian, this means
that upon averaging, with a Gaussian distribution for allλi, this
function becomes

with

Effectively this leads to a change in the homogeneous
broadening parameter. Since the value ofσ is hard to determine,
we may as well takeσ′ as the parameter to fit the spectra. The
result is that in this limit that we get slightly broadened lines at
the unperturbed frequencies; see Figure 2a.

The value ofN′ is not the same for all lines. For the two
outer levels, which are nondegenerate, its value equals 2N, the
number of pigments in the ring; for all other (degenerate) states
it is equal toN.

In Figure 2b we show the results of the correlation functions
for slightly largerσ′, large enough to cause some overlap of
the excitonic states at the band edge, where they are close
together, but small enough to leave the inner excitonic levels
unperturbed. It is clear that at the band edges the coherence
correlations have already decayed in space, and no spatial decay
is observed for intermediate exciton levels. Since the total width
of the exciton manifold is determined by the nearest-neighbor
interaction energy, cf. section 2, and the total number of levels
by the number of monomers in the ring, and, owing to exchange
narrowing the overlap scales with∆/xN, the decay of correla-
tion functions is somewhat faster for larger ring sizes.

For largeσ and/or∆, i.e., much larger than any excitonic
energy difference, we can neglect theωk dependence inG and
approximate thek-dependent part of eq 21 as follows:

So, in this case, the correlation functions are effectively reduced
to δ functions; in other words, the monomers are completely
uncorrelated.

In all intermediate cases the exciton length could be related
to the range over whichFnν,mν′(ω) are nonzero. From the above
limiting cases we can infer that for small homogeneous and
inhomogeneous broadening this range is effectively the whole
ring, whereas for very large inhomogeneities all correlations
between neighboring chromophores vanish; cf. eq 22. For
antenna systems we are clearly in the intermediate regime: both
the homogeneous and the inhomogeneous line width,σ and∆,
are larger than the energy separation between excitonic states
but considerably smaller than the width of the complete excitonic
manifold.

4. Coherence Correlations and Exciton Size

In this section we will show how the functionsFnν,mν′(ω)
can be used to define an exciton length that on hand can be
used as a measure of contributions to an excitonic state and on
the other hand can also be used directly in the explanation of
spectroscopic features. We concentrate on the functionsFnν,mν′-
(ω) for ring systems, which leads to the simplification that these
functions only depend on|nν - mν′|.

The current paradigm in excitonic theory of disordered
systems is illustrated in Figure 3a. For a particular realization

Hr ) ∑
n,ν

λnν |nν〉 〈nν| (16)

I(ω0) ∝ ∑
nR;mâ

Fnν,mν′ (ω0) [µbnν‚µbmν′ - 2(µbnν × µbmν′)‚

( rbnν - rbmν′) k0 sinφ] (17)

Fnν,mν′(ω) ) ∑
k)0

2N-1

〈G(ω - ωk) Cnν
k Cmν′

k/〉 (18)

〈G(ω0 - ωk) Cnν
k Cmν′

k 〉 ≈ 〈G(ω0 - ωk)〉 〈Cnν
k Cmν′

k 〉 (19)

〈G(ω0 - ωk)〉 ) 1

σx2π
〈e-(ω0-ωk-(1/N)∑iλi)2/2σ2

〉 )

1

σ′x2π
e-(ω0-ωk)2/2σ′2 (20)

σ′2 ) σ2 + ∆2

N′ (21)

∑
k

〈G(ω0 - ωk) Cnν
k Cmν′

k 〉 ≈ G(ω0) ∑
k

〈Cnν
k Cmν′

k 〉 )

G(ω0) δnν,mν′ (22)
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from a random distribution with∆/V ≈ 2, whereV is the average
nearest-neighbor interaction, the excitonic states are calculated,
and from these we calculate the contribution of each of the
pigments, that is,|Cn

k|2. The figure shows the result of this
calculation for the two lowest states,k ) 0, 1, for this particular
realization. This picture is then used to suggest that two to three
pigments “participate” in these excitonic states.

There are a number of obvious limitations to this picture.
The first is that there is no direct connection between the
transition dipole moment of the excitonic state and the popula-
tions in Figure 3a. In fact calculations for these states show
that, although they do not look the same, their transition dipole
moments have similar sizes. The reason is that the populations
of the BChl’s do not play a dominant role in the calculation of
transition dipoles; coherences (i.e., the off-diagonal elements
of the density matrix) of the pigments do, but they do not appear
in this view. In fact populations can play a role in selected
nonlinear spectroscopic measurements, for instance, fluorescence

and spontaneous Raman spectroscopy (ref 13, Chapter 9), but
also in those cases coherences are relevant.

The second limitation is that populations are not directly
measurable quantities. Even if we could do a direct measurement
on single aggregates, we could still not measure the contents
of Figure 3a directly. In addition true measurements are always
on ensembles of systems, and the effects of homogeneous
broadening cannot be incorporated in the above view.

We must realize that in a picture as shown in Figure 3a we
neglect about 95% of the information available to us, by
choosing just 18 populations as an indication of exciton size,
rather than the 18× 18 combinations of coefficients we could
use. To demonstrate that this information is relevant, we show
in Figure 3b the magnitudes ofC8

k Cm
k for the same realization

as was used to obtain Figure 3a. It is clear that this quantity,
which represents the correlations of pigment 8 with pigments
m, still extends over a large part of the ring. Even linear
spectroscopic features can only be explained if we have a way
to take these correlations into account.

Since the functionsFnν,mν′(ω) are in principle measurable
quantities, it would be advantageous to find a definition of
exciton length based on these correlation functions. This would
in fact account for the objections given above.

In Figure 4a we plot the functionsF11,mν′(ω) and in Figure

Figure 2. (a, top) Autocorrelation functionF11,11(ω)(---) and opposite
side of the ring coherence correlation functionF11,51(ω)(‚‚‚) for small
diagonal disorder,∆ ) 20 cm-1, and zero homogeneous broadening.
For positive amplitude the functions overlap completely. Also shown
is the first function for zero disorder (solid lines), which gives the
positions of the excitonic states as a function of the wavelength. There
is some minor overlap between the two highest excitonic states, but
overall there is no noticeable decay in the correlations. (b, bottom)
Autocorrelation functionF11,11(ω)(s) and coherence correlation func-
tions F11,22(ω)(---) andF11,51(ω)(‚‚‚), but now for∆ ) 80 cm-1 and
zero homogeneous width. There is considerable overlap at the band
edges, leading to smaller magnitude of the coherence correlation,
whereas in the middle, where the average distance between excitonic
levels is approximately 100 cm-1, there is no overlap and consequently
no decay of the coherence correlation.

Figure 3. (a, top) Probability that pigmentn is excited,|Cn
k|2, in the

lowest exciton level (k ) 0, solid line) and the next to lowest (k ) 1,
dotted line) for a particular realization, from a random distribution with
∆/V ≈ 2, of excitation energies of the chromophores in the B850 band.
Their transition energies correspond to 889 and 877 nm, respectively,
and the magnitudes of their transition dipole moments are 8.0 D (k )
0) and 7.4 D (k ) 1). (b, bottom) Correlation functionC8

0 Cm
0 , which

describes the coherences and the population of theâ-bound pigment
in cell 4, for the same realization as in Figure 3a.
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4b the relative amplitudesF11,mν′(ω)/F11,11(ω), where the
average was over a large number of realizations taken from a
random distribution with width∆/V ≈ 2. To get this picture
we used zero homogeneous line width, to show just the effects
of inhomogeneities.

Several points are immediately obvious. The original excitonic
structure, described in section 2, is still present in Figure 4b.
This can be seen, for instance, by comparingF11,11(ω) with
the envelope over the peak maxima in Figure 2 of the same
function.

Next, consider the curve labeled 1 in Figure 4b. For the
unperturbed ring of pigments we would get for the amplitude
of F11,12(ω)/F11,11(ω) at frequencyωk using the results of the
Appendix

This cosine-type behavior is still clearly visible in Figure 4b;
only the amplitude was reduced from 1 to a lower value of
approximately 0.7. Similar considerations hold for the other
curves. For an ideal ring system of similar monomers all the
curves should be cosines, with amplitude equal to 1. The
asymmetry is caused by the fact thatR- and theâ-bound
pigments are different and the decay in amplitudes by the
overlap of excitonic states due to disorder.

The relative amplitudes of the correlation function are plotted
in Figure 5 and fitted with an exponential e-x/x0, which appears
to give a very good fit, especially for larger values of∆. We
propose to use the decay constantx0

-1 of this exponent as a
measure of exciton lengthx0, which is thus directly related to
the decay of coherences as a function of distance. In Figure 5
we show this exponential decay for various other values of∆/V.
The limiting cases discussed in the previous section also fit in
nicely with this picture. For small inhomogeneous line width,
smaller than the distance between the exciton levels, there is
virtually no overlap between the states, and consequently there
is no decay. The opposite case, a large∆/V ratio, will lead to
eq 22, and all correlations between neighboring pigments vanish.

We can now address the above objections to the original
definition of exciton length. First of all there is a direct
connection between spectroscopy and the value ofx0. We will
consider this in detail in the next section, but at this point we
would like to point out that for ordinary absorption short-range
correlations are measured: owing to the ring structure the major
contribution to the absorption spectrum originates fromn ) 1,
2, and 3, whereas for circular dichroism the major contribution
to the spectrum comes from chromophores about a quarter of
the ring apart. This is a purely geometrical effect, but it allows
us, on the basis of a comparison of the spectra, to estimate the
value ofx0.

In addition, although the decay is exponential, this is still
much slower than the Gaussian decay the populations in Figure
3a could be fitted with. A consequence of this is that it can be
understood that a large part of the ring does contribute to the
CD spectrum.

One has to be careful to use these numbers directly in
nonlinear spectroscopy, since the averages occurring inø(3) have
in general products of four coefficients and up to three Green
functions. The method given here can, however, easily be
extended to nonlinear spectroscopy. Another possible extension
is to use different Green functions, to model temperature-
dependent behavior, or even to use time-dependent properties.

As can be inferred from eq 22 the effects of homogeneous
and inhomogeneous broadening are somewhat similar. Consider
a perfect ring, with only lifetime broadening. As long as the

Figure 4. (a, top) The ensemble-averaged functions,F11,mν′(ω), of an
R-bound BChl with its neighbors 1â, 2R, 2â, ..., 5â. The homogeneous
line width is zero; the fwhm of the inhomogeneous distribution is 572
cm-1, which corresponds to∆/V ≈ 1. The curve labeled 0 is the
autocorrelation function; the curves labeled 1-4 denote the first four
correlation functions. (b, bottom) Relative amplitudesF11,mν′(ω)/F11,11-
(ω) for the same ensemble as in Figure 4a.

Re[C/12
kγ

C11
kγ ] ) cos

πk
N

tanθ(k) cosφ(k) ≈ - cos
πk
N

(23)

Figure 5. The maximum amplitudes (]) of each of the scaled
functions,F11,mν′(ω), of Figure 4b as function of the distance between
the pigments and fitted with an exponential e-x/x0 (solid line). The
inverse decay constant isx0 ) 3.2 at∆ ) 240 cm-1 andσ ) 0 cm-1.
Also shown are the fit results for∆ ) 240 cm-1 and σ ) 85 cm-1

(---), which results inx0 ) 2.9, ∆ ) 490 cm-1 andσ ) 0 cm-1 (‚‚‚),
which givesx0 ) 1.6, and∆ ) 0 cm-1 andσ ) 85 cm-1 (x0 ) 3.7)
(-‚-). For the last result only homogeneous broadening was used; cf.
the next figure.
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lines corresponding to individual excitonic transitions do not
overlap, probing the system at a certain frequency means directly
probing the excitonic level (note that not every level can be
probed, since the transition dipole moment could be zero). When
the lines start to overlap we probe two or more exciton levels
simultaneously. This leads to cancellations, especially for the
higher energy excitons, since the eigenfunctions involve more
sign changes. Note that this can be viewed as localization due
to phonon-coupling, since the decay-associated Green function
is due to the presence of phonons in the system.32 In Figure 6
we show the effect of just homogeneous broadening for a fwhm
value of 200 cm-1. There is a small decay, and consequently
the “true” exciton length for the system may be slightly smaller
if both homogeneous and inhomogeneous effects are taken into
account.

The (apparent) exciton lengthx0 for a system with a fwhm
of 572 cm-1 for inhomogeneous and 200 cm-1 for homogeneous
broadening is approximately 3.

In Figure 7x0
-1 is plotted as a function ofσ′/V. For smaller

values ofσ and∆ the points can be reasonably well fitted with

a straight line, as can be inferred from eq 21. For larger values
that equation is no longer valid, since it was derived under the
assumption that disorder does not mix eigenvalues and eigen-
functions of the exciton states. The relation betweenx0 andσ′/V
is well approximated by

5. Consequences of Ring Structure and Spectroscopy

The structural parts of eq 17 depend on the geometry of the
ring only. We will use the B850 ring of LH2 ofRps. acidophila
to illustrate some of the important features. It is implicitly
assumed that the structure is rather rigid, even at room
temperature.

In the previous section we used a one-dimensional picture to
visualize the decay of the correlations functions, which is
sufficient for rings of monomers. In general, for less structured
assemblies a two-dimensional picture is needed;14 in this
particular case it is sufficient to distinguish betweenRR-, Râ-,
and ââ-pairs. Equation 17 gives the two possible geometric
structure functions that can be used to probe the exciton
manifold. For OD the last term in eq 17 can be neglected, and
we are left with

In Figure 8a the structure functionsS5R,mν′ and in Figure 8b
S5â,mν′ are plotted for all values ofmν′. In the figure thex-labels
9 and 10 correspond to pigments 5R and 5â (cf. section 2).
The alternating behavior of these functions is a consequence of
the tail-to-tail orientation of the dipole moments. We note that
these functions reach their maximum values for the pigments
of the same dimer:mν′ ) 5R (9) and mν′ ) 5â (10) and
pigments half a ring apartmν′ ) 1R (1) andmν′ ) 9â (18).
Since the coherence correlation functions decay exponentially,
this implies that absorption spectroscopy mainly probes cor-
relations between pigments less than a quarter of the ring apart.

The opposite is the case for circular dichroism spectroscopy.
In this case we measure the difference between right and left
circularly polarized light, which leads to the following expres-
sion for the rotation strengthR(ω):

Since the outer product of a vector with itself is zero, in this
case the terms with equal indices do not contribute at all. In
Figure 9a,b we have depicted the structure functionsTnν,mν′ for
the same combinations as the absorption structure functions.
Again the alternating behavior due to the arrangement of the
dipole moments is observed, but now the main contribution to
the CD spectrum originates from pigments further apart, where
the coherence correlation functions have decayed. In principle
this would allow us to give an estimate of the value ofx0 based
on a comparison of the absolute magnitudes of the OD and CD
spectra.

In a preceding paper,7 we indicated that the CD spectra for
degenerate pigments are small owing to canceling effects of
the RR-, ââ-, and Râ-contributions. Here we can further
elucidate this point, using the description of LH2 in terms of

Figure 6. Coherence correlation functions,F11,mν′(ω), with nν′ and
other numbering as in Figure 4a, for homogeneous broadening only.
The width of the homogeneous distributionσ ) 85 cm-1, so thatσ/V
≈ 0.4. The decay constant in this case turns out to bex0 ) 3.7; cf. the
previous figure.

Figure 7. Decay constantx0
-1 as a function of the ratioσ′/V (see eq

21). Results of fits with inhomogeneous broadening only are represented
by ], those with homogeneous broadening by+ signs. The straight
line is the curvex0

-1 ) 0.69σ′/V. For line widths larger than 0.5σ′/V
the effects of the homogeneous and the inhomogeneous broadening
deviate. ForRps. acidophila, V ≈ 200 cm-1, and 0.5σ′/V corresponds
to a fwhm of 235 cm-1 in the case of homogeneous broadening and to
705 cm-1 for inhomogeneous broadening.

1
x0

≈ 0.7
σ′
V

(24)

I(w) ∝ ∑
nν,mν′

Fnν,mν′(ω) [µbnν‚µbmν′] ≡ µ2 ∑
nν,mν′

Fnν,mν′(ω) Snν,mν′ (25)

R(ω) ∝ ∑
nν,mν′

Fnν,mν′(ω) [µbnν × µbmν′]‚

( rbnν - rbmν′) ≡ µ2 ∑
nν,mν′

Fnν,mν′(ω)Tnν,mν′ (26)
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interlockingR- andâ-rings given in section 2, together with eq
26. From Figure 9 we infer that the main contribution from the
individual R- and â-rings comes from pigments a half of the
ring apart, where the coherence correlations are small, and in
addition the sum will almost cancel. The contribution of the
Râ-terms is largest for pigments one quarter of the ring apart,
where the correlations are still appreciable, but the structure
function itself has a rather low value. TheRâ-contributions to
the CD spectrum of a pigment with neighbors at its right side
are opposite to the contributions with neighbors on the left. The
cancellation of all contributions is almost complete for the LH2
ring of Rps. acidophilawith the Cogdell structure and degenerate
energies of the monomers (εR ) εâ, cf. eq 6). This leads to a
small CD and vanishing of the zero crossing of the CD spectrum
in the 850 nm range.6 There are three ways to increase the
magnitude of the spectrum in this range: changing the angles
that the transition dipoles of the chromophores make with the

plane of the ring or with the tangent of the ring. Both reduce
the cancellation effects for geometric reasons. The third pos-
sibility is lifting the degeneracy of the monomers, which changes
the coherence correlation functions with similar results. Some
of the consequences of these changes and their relative effects
were also discussed in refs 7 and 11. We note that changes in
the orientations of the dipole moments largely conserve the
excitonic correlations; the interaction energies do not change
much, but they do change the geometric structure factors.
Changes in the sites energies, however, affect the excitonic
correlations only, whereas the geometric structure factors remain
unaltered.

In the remainder of this section we show how the coherence
correlation functions combine with the geometric structures to
give the spectra. We look at two cases in particular, one where
the excitation energies of the monomers are the same and one
where they differ by the amount necessary to obtain a reasonable
CD spectrum. In both cases the inhomogeneous line width is∆

Figure 8. OD structure functions,S5R,mν (a) andS5â,mν (b), for the
B850 ring of LH2 of Rps. acidophila. There are minor differences
between the two functions owing to the specific geometry of theR-
and â-transition dipoles. The alternating signs are a consequence of
the tail-to-tail orientation of the neighboring dipoles. The points
connected by the dotted lines are those for whichν ) R in both figures;
those connected by the dash-dotted lines are forν ) â. These structure
functions have to be multiplied with the coherence correlation functions
to obtain the absorption spectrum. Since the functions displayed here
have their maximum fornν ) mν′, and for pigments half the ring apart,
the autocorrelation and nearest-neighbor correlations dominate the OD
spectrum. The different ways of numbering the pigments are explained
in section 2.

Figure 9. CD structure functions,T5R,mν (a), T5â,mν (b), for the B850
ring in LH2 of Rps. acidophila. As in the previous figure in panel a
the RR- and theRâ-combinations and in panel b theââ- and theâR-
combinations are shown. Note that these functions have the dimension
of a length. These structure functions have to be multiplied with the
coherence correlation functions to obtain the CD spectrum. In this case
the result is zero fornν ) mν′, and reaches a maximum for pigments
a quarter of the ring apart. Therefore longer range correlations determine
the CD spectrum. Note, however, that theRâ- and âR-combinations
probe the correlation functions with a different sign, and so do theRâ-
andâR-combinations. As a result CD practically vanishes for the B850
ring. This point is further elucidated in Figure 12.
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) 240 cm-1, corresponding to a fwhm of 570 cm-1, and the
homogeneous line width isσ ) 85 cm-1, corresponding to a
fwhm of 200 cm-1. Since the nearest-neighbor interaction is
approximatelyV ) 200 cm-1, this leads to considerable overlap
of the excitonic states, and Figure 7 of the previous section
applies. The monomer energy is chosen to be 12 150 cm-1 (823
nm) to yield spectral features in the right wavelength region.

In Figure 10a,b we show the coherence correlation functions
F5R,mν′(ω) (m ) 1, ..., 9,ν′ ) R, â) andF5â,mν′(ω) (m ) 1, ...,
9, ν′ ) R, â). In the Figure 10c,d we show the same functions
but now for a static energy mismatch of 300 cm-1. For the
R-monomers we chose 12 300 cm-1 (813 nm), and for the
â-pigments 12 000 cm-1 (833 nm) was used. The nearest-
neighbor correlation is negative at the long-wavelength side and
positive at the blue side. The excitonic patterns are also very
clear for the next-nearest neighbors and so forth. The overlap
of the lines, due the line broadening mechanisms, results in the
decay of the correlations between pigments far apart.

The combination of Figures 8 or 9 and Figure 10 yields the
contributions of the pigments to the spectra as a function of the
wavllength. In Figure 11 these are shown in the case of
nondegenerate site energies ofR- andâ-bound pigments. The
energy mismatch is taken equal to 300 cm-1 as in Figure 10c,d.
We notice that indeed the OD spectrum has contributions mainly
from the center (“populations”) and drops off rapidly, whereas

CD gets positive and negative contributions from all coherences.
The OD and CD spectra are obtained by summing all contribu-
tions for each wavelength. The resulting spectra are shown in
Figure 12 for both degenerate and nondegenerateR- and
â-bound pigments.

The CD spectrum depends on the difference between theRR-
and theââ-contributions; contributions to the CD ofR-pigments
only are opposite to theââ-combinations, changes in the site
energies change the ratio of these contributions at the red side
of the spectrum, as was discussed previously. The CD arising
from Râ-combinations is very small and identical in both cases.
A linear dichroism experiment with all LH2’s in thexy-plane,
and the incident light polarized along thez-axis, yields a signal
proportional to thez-components of the transition moments.39,40

The structure function corresponding to LD is particularly simple
since thez-components of the chromophores in the B850 ring
of Rps. acidophilaall have equal sign and almost equal
magnitude. This means that the LD spectrum ofRps. acidophila
depends directly on the correlations. At the ends of the spectrum
the RR- and the ââ-correlations are all positive. TheRâ-
correlation cancels the autocorrelations in the red part and
enhances them in the blue. This leads to relatively strong LD
features in the 800 nm region and very weak contributions at
the very red edge of the 850 band.

Figure 10. (a, c) Correlation functionsF5R,mν′(ω) of an R-bound BChl shown as a function of the wavelength, formν′ ranging over all B850
pigments. (b, d) Correlation functionsF5R,mν′(ω) with a â-bound BChl. TheR- and theâ-bound BChl’s are degenerate in the cases a and b. In the
panels c and d the same functions are shown for nondegenerate dimers; the energy difference between theR- and theâ-bound BChl’s is 300 cm-1.
For theR -bound BChl’s we chose 12 300 cm-1 (813 nm), and for theâ-pigments 12 000 cm-1 (833 nm) was used. In all panels, the wavelength
scale (the longx-axis) ranges from 750 to 950 nm. The shorty-axis identifiesmν. The tick mark indicates BChl 5R, the position of the autocorrelation
in the panels b and d. At the short-wavelength side, the functions are positive for allmν′, and at the longer wavelengths the signs alternate. The
profiles of figures and the intensities are very similar in panels a and b, as are the positions of the maxima. These positions differ with the wavelengths
at which the maxima occur in panels c or d. On the short-wavelength side the correlations decay much faster than on the red side. The autocorrelation
of an R-bound BChl is strongest at shorter wavelengths, and theâ-bound BChl’s have their strongest contribution at the long-wavelength side.
Decreasing the energy of theâ-bound pigments has a pronounced effect on the correlation functions at the red edge of the energy spectrum.

4498 J. Phys. Chem. B, Vol. 104, No. 18, 2000 Koolhaas et al.

http://pubs.acs.org/action/showImage?doi=10.1021/jp9918149&iName=master.img-009.jpg&w=423&h=328


6. “Typical Cases” and Relation to Other Measures of
Exciton Length

Recently another measure of the correlation length was
introduced by Chachisvilis,41 and a similar measure was also
used by Monshouwer.42 Its definition can in our notation be
written as

where the distinction betweenR andâ was neglected.
Thus the average is over the lowest excitonic state, regardless

of its energy. In this connection, typical cases are sometimes
also invoked, which purport to describe the behavior of these
lowest energy excited states.

Typical correlation lengths resulting from this definition are
usually also in the range 3-5, which is not entirely surprising
since the main contribution to this correlation function originates
of course also from states close to the average energy of the
lowest energy state. This can be shown more clearly by
considering the function

where the ensemble average is now over the lowest excitonic
only. This result would then have to be contracted withµbn‚µbm

to describe the superradiance measurements by Monshouwer.42

It is obvious that the short-range correlations are favored in these
measurements, as with regular absorption.

In this context it is illustrative to look at some so-called typical
cases. In Figure 13 we show two typical cases picked from the
random distributions discussed in the previous section. First of
all, only states at the extreme red edge of the excitonic band
give the “typical” picture of the very rapidly decaying popula-
tions depicted in Figure 3a, and even in those cases the
correlations between the pigments cannot be neglected. For
states that are taken more from the center of the distribution,
coherences and populations appear to extend over a larger part
of the ring and are indistinguishable from realizations of higher
excitonic states.

Another measure that is frequently used is the participation
ratio, defined by its inverse: the number of coherent pigments
at energyω,43,44 which in our notation would be proportional
to

This is again a population measure: only states with the same
n (same pigment) contribute to this quantity, and as such it is
only relevant in selected nonlinear optical experiments, namely,
those in which coherences do not play a role. To use it for linear
optical experiments would be wrong. For instance it severely
underestimates the participation of pigments in CD experiments.

Figure 11. FunctionsF5R,mν′(ω) andF5â,mν′(ω) multiplied by the OD structure function (a, b) and multiplied with CD structure function (c, d). See
the caption of Figure 10 for the description of the axes. The energy difference between theR- and theâ-bound BChl’s is 300 cm-1 in this figure.
Panels a and b show how the signs alternate at the short-wavelength while all correlations are positive at longer wavelengths. The main contribution
to the absorption arises from the nearest neighbors as is clearly seen in panels a and b. The CD products in panels c and d, however, hardly show
any decrease in intensity for BChl’s further apart; the autocorrelation function is of course zero for all values ofω. The correlation functions
decrease for pigments further apart, but the structure functions become larger, see Figure 9. For everyω the signs of the product functions now
alternate as a function ofmν′.

C(n) ) 〈C1
0 C1+n

0 〉 (27)

Fnm
0 (ω) ) 〈G(ω - ω0) Cn

0 Cm
0 〉 (28)

〈∑
k

δ(ω - ωk) ∑
n

|Cn
k|4〉 (29)
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In addition the values depend on the choice of basis for
degenerate systems. As was pointed out by Monshouwer,24

different authors find different coherence sizes for the same
system, only by choosing a different basis set of excitonic
functions.

7. Remarks and Conclusions

This paper presented analysis of the absorption and the CD
spectra in terms of a real space description and is particularly
successful since the effects of the excitonic structure of the B850
ring on one hand and the effects of the structure of the complex
in combination with the experimental probe on the other hand
are separated. Effects on the CD and OD spectra due to changes
in geometry of the system are very easily understood as well
as the effect of the energy mismatch between theR- and the
â-bound BChls. Furthermore, on the basis of this model detailed
insight is gained of the averaged excitonic structure of the
complex. The real space description of the averaged density
matrix still exhibits the ninefold symmetry, indicating equal
excitation probability. As a result of the line-broadening
mechanisms, the coherences in the density matrix decay
exponentially. These coherences describe the correlations
between the pigments and determine the frequency behavior of
the complex. Spectra can then be understood as the result of
probing these correlation functions with different types of

probes. Thus we found that with OD mainly short-range
correlations are probed, whereas CD probes longer ranged
correlations.

A definition of the exciton length based on the decay behavior
of the correlation functions relates the spectroscopic properties
to the excitonic properties of the system. Therefore we suggest
a concurrent definition of the exciton length based on the
steepness of the exponent, which describes the decay of the
correlation functions in space due to line-broadening mecha-
nisms. In this way the exciton length and the spectroscopic
features of the system are well defined for localized and
delocalized excitons.

For the cases studied here the correlation length (exciton
length) as defined by the decay of coherence correlation
functions is independent of the frequency, and for the parameters
used in the calculations is approximately equal to three. This is
not necessarily true. Only when all excitonic lines overlap
considerably is this the case. The width of the exciton manifold
is mainly determined by the nearest-neighbor interaction, but
the distance between the excitonic lines is much smaller at the
edges of the manifold than in the middle. This means that for
smaller homogeneous/inhomogeneous line width we can see
spatial decay of the correlation functions for the extremal

Figure 12. (a, top right and b, top left) OD (solid lines) and CD (dotted lines) spectra. (c, bottom left and d, bottom right) Contributions to the CD
spectra of the ring ofR-BChl’s only (solid), ofâ-bound BChl’s only (dotted), and the CD arising from the combination of these rings,Râ (dashed).
The sum of these yields the CD spectrum. In panels a and c the BChl’s in the dimer are degenerate, and in panels b and d their energy difference
equals 300 cm-1. Panel c shows that the CD arising from the ring ofR-bound BChl’s cancels the CD of theâ-bound BChl’s, a consequence of the
properties of the structure functions shown in Figure 9. The total signal is rather similar to the CD of theRâ-combination; it is small and does not
show a zero crossing in the 860 nm region. Panel d shows that lifting of the degeneracy amplifies the CD of theâ ring at the long-wavelength side
of the spectrum, so that it is no longer canceled by the contribution of theR-ring.
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frequencies, but not for frequencies related to energies in the
middle of the manifold. An example of this is given in Figure
2a,b.

The value of∆/V ≈ 1-2 used in this paper to model the
correlation function and spectra gives good agreement with
observed line widths at room temperature.7,11 Similar values
were also used by refs 24 and 42 to model superradiance
experiments. An recent indirect confirmation comes from single-

molecule experiments,47 where the observed inhomogeneity is
consistent with a delocalization over 4-5 pigments and a∆/V
value of approximately 2. This is in contrast to the results by
Small and co-workers,35,37 who on the basis of hole-burning
experiments find smaller values for the disorder, and conse-
quently a larger exciton length, and less oscillation strength in
the lowest excitonic level.

We also note that the calculation of the unperturbed (or
average) excitonic states is still useful for understanding the
features of the averaged exciton correlation functions. The
averages reflect the ninefold symmetry of the unperturbed
system; only the amplitudes of the correlation functions have
decayed.

For the model used here homogeneous and inhomogeneous
broadening have similar effects. The reason is that we have
assumed the same homogeneous line width for each of the
excitonic lines of every realization of a disordered system. This
means that we can either give each line of a realization a
homogeneous lined width, thus speeding up the MC calculation
by several orders of magnitude, or at the end of the calculation
convolute the inhomogeneously broadened correlation function
with the homogeneous Gaussian. Equation 15 can also be written
as

which is a much slower procedure.
In general, however, the functionsG(ω0 - ωk) are not the

same for each level. Obviously it is easy within the context of
the model presented in this paper to include a different
homogeneous line width for each level in every realization. A
common approach is to assume that the lowest excitonic level
has a much longer lifetime than the other levels and that within
a very short time an excited-state Boltzmann distribution
pertains.45 These considerations do not play a major role in
regular absorption and CD spectroscopy, although it is possible
to get a better fit of the red edge of the B850 CD spectrum
using a smaller lowest exciton line width, but they are extremely
relevant in, for instance, fluorescence decay and other nonlinear
forms of spectroscopy.

The Green functions,G(ω0 - ωk), reflect the time-dependent
properties of the system. Implicit for the model used here is
that localized states, that is, states where the excitation is
localized on one or more pigments, do not remain localized.
For the homogeneous and inhomogeneous broadening param-
eters used, decay and delocalization takes place within about
50 fs. This can be shown directly by Fourier transformation of
the functionsFnm(ω). We note that the similarity of Figures 4a
and 6 will lead to similar behavior in time of the correlation
functions, even though the underlying mechanisms are com-
pletely different. It is not possible to directly access this behavior
experimentally.

To give an adequate description of the dynamics of excitation
transfer, and from there to the Green functions, we would need
a consistent model for the relaxation and transfer mechanisms
among the excitonic levels, and between excitonic levels and
the ground state. This is beyond the scope of this paper.
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Figure 13. Correlation functions,Fnm
0 (ω), see eq 28, belonging to the

lowest exciton band of one realization picked from a Monte Carlo
simulation of 10.000 runs. The selection of the realization is based on
the frequency of the lowest transition. The fwhm of the energy
distribution is 572 cm-1, and the energy difference between theR- and
theâ-bound BChl’s is 300 cm-1. In panel a the frequency is found in
the interval 10 000< ω(k ) 1) < 11 000 cm-1, which corresponds to
909-917 nm. In panel b the frequency of the lowest level is 11 450<
ω(k ) 0) < 11 550 cm-1, i.e., 866-873 nm. The probability of finding
the lowest exciton function in a specific interval is smaller for the
frequency intervals further away from the smallest transition frequency
in the system without energetic disorder. The probabilities for finding
an energy in the intervals are 0.3% in panel a (top) and 34% in panel
b (bottom), respectively.

Fnν,mν′(ω) )
1

x2πσ
∫-∞

∞
dω′ e-(ω-ω′)2/2σ2 ∑

k

〈δ(ω′ -

ωk) Cnν
k Ck
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Appendix. Solution of the Dimer Problem

The full solution of the dimer problem was already given in
Appendix C of ref 46 and will not be repeated here; we just
give the results in terms of the quantities introduced in section
2. Equation 8 shows that we have to solve the following
eigenvalue problem for every value ofk:

For this problem the eigenvalues are

and the eigenfunctions can be written as

and

with

and

These results can be summarized as

where the coefficientsCnν
kγ can be found from eqs A4 and A5

together with eq 7. Thus, for instance
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|εγ(k)〉 ) ∑
ν)1

2

∑
n)1

N

Cnν
kγ |n, ν〉 (A8)

Cn1
k1 ) 1

xN
e2πikn/N cosθ(k)

4502 J. Phys. Chem. B, Vol. 104, No. 18, 2000 Koolhaas et al.


