6 research outputs found

    Universal geometric frustration in pyrochlores

    Get PDF
    Materials with the pyrochlore/fluorite structure have diverse technological applications, from magnetism to nuclear waste disposal. Here we report the observation of structural instability present in the pyrochlores A₂Zr₂O₆Oʹ (A = Pr, La) and Yb₂Ti₂O₆Oʹ, that exists despite ideal stoichiometry, ideal cation-ordering, the absence of lone pair effects, and a lack of magnetic order. Though these materials appear to have good long-range order, local structure probes find displacements, of the order of 0.01 nm, within the pyrochlore framework. The pattern of displacements of the A₂Oʹ sublattice mimics the entropically-driven fluxional motions characteristic of and well-known in the silica mineral β-cristobalite. The universality of such displacements within the pyrochlore structure adds to the known structural diversity and explains the extreme sensitivity to composition found in quantum spin ices and the lack of ferroelectric behavior in pyrochlores

    Magnetic excitations of the classical spin liquid MgCr2O4

    No full text
    We report a comprehensive inelastic neutron-scattering study of the frustrated pyrochlore antiferromagnet MgCr2O4 in its cooperative paramagnetic regime. Theoretical modeling yields a microscopic Heisenberg model with exchange interactions up to third-nearest neighbors, which quantitatively explains all the details of the dynamic magnetic response. Our work demonstrates that the magnetic excitations in paramagnetic MgCr2O4 are faithfully represented in the entire Brillouin zone by a theory of magnons propagating in a highly-correlated paramagnetic background. Our results also suggest that MgCr2O4 is proximate to a spiral spin-liquid phase distinct from the Coulomb phase, which has implications for the magneto-structural phase transition in MgCr2O4
    corecore