6,517 research outputs found

    Resonant x-ray scattering study on multiferroic BiMnO3

    Full text link
    Resonant x-ray scattering is performed near the Mn K-absorption edge for an epitaxial thin film of BiMnO3. The azimuthal angle dependence of the resonant (003) peak (in monoclinic indices) is measured with different photon polarizations; for the σπ\sigma\to\pi' channel a 3-fold symmetric oscillation is observed in the intensity variation, while the σσ\sigma\to\sigma' scattering intensity remains constant. These features are accounted for in terms of the peculiar ordering of the manganese 3d orbitals in BiMnO3. It is demonstrated that the resonant peak persists up to 770 K with an anomaly around 440 K; these high and low temperatures coincide with the structural transition temperatures, seen in bulk, with and without a symmetry change, respectively. A possible relationship of the orbital order with the ferroelectricity of the system is discussed.Comment: 14 pages, 4 figure

    Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N

    Full text link
    We combine optical morphologies and photometry from HST, redshifts from Keck, and mid-infrared luminosities from Spitzer for an optically selected sample of~800 galaxies in GOODS-N to track morphology evolution of infrared luminous galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of LIRGs from z~1 to lower redshift, in agreement with previous studies. In addition, there is evidence for a morphological evolution of the populations of LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the peculiar/irregular to spiral ratio is ~0.7, and both classes span a similar range of L_{IR} and M_B. At low-z, spirals account for one-third of LIRGs, the peculiar to spiral fraction rises to 1.3, and for a given M_B spirals tend to have lower IR luminosity than peculiars. Only a few percent of LIRGs at any redshift are red early-type galaxies. For blue galaxies (U-B < 0.2), M_B is well correlated with log(L_{IR}) with an RMS scatter (about a bivariate linear fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than M_B = -21, 75% are LIRGs, regardless of redshift. These results can be explained by a scenario in which at high-z, most large spirals experience an elevated star formation rate as LIRGs. Gas consumption results in a decline of LIRGs, especially in spirals, to lower redshifts.Comment: 6 pages, 2 figures, accepted ApJ

    Evidence for Ubiquitous Collimated Galactic-Scale Outflows along the Star-Forming Sequence at z~0.5

    Full text link
    We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption line profiles in individual spectra of 105 galaxies at 0.3<z<1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, fully sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M_*/M_sun > 9.5 at 0.3<z<0.7. Using the Doppler shifts of the MgII and FeII absorption lines as tracers of cool gas kinematics, we detect large-scale winds in 66+/-5% of the galaxies. HST/ACS imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ~89% of galaxies having inclinations (i) <30 degrees (face-on), while the wind detection rate is only ~45% in objects having i>50 degrees (edge-on). Combined with the comparatively weak dependence of the wind detection rate on intrinsic galaxy properties, this suggests that biconical outflows are ubiquitous in normal, star-forming galaxies at z~0.5. We find that the wind velocity is correlated with host galaxy M_* at 3.4-sigma significance, while the equivalent width of the flow is correlated with host galaxy SFR at 3.5-sigma significance, suggesting that hosts with higher SFR may launch more material into outflows and/or generate a larger velocity spread for the absorbing clouds. Assuming that the gas is launched into dark matter halos with simple, isothermal density profiles, the wind velocities measured for the bulk of the cool material (~200-400 km/s) are sufficient to enable escape from the halo potentials only for the lowest-M_* systems in the sample. However, the outflows typically carry sufficient energy to reach distances of >50 kpc, and may therefore be a viable source of cool material for the massive circumgalactic medium observed around bright galaxies at z~0. [abridged]Comment: Submitted to ApJ. 61 pages, 25 figures, 4 tables, 4 appendices. Uses emulateapj forma

    The Luminosity Function of Field Galaxies in the CNOC1 Redshift Survey

    Get PDF
    We have computed the luminosity function for 389 field galaxies from the Canadian Network for Observational Cosmology cluster redshift survey (CNOC1), over redshifts z = 0.2-0.6. We find Schechter parameters M^* - 5 log h = -19.6 \pm 0.3 and \alpha = -0.9 \pm 0.2 in rest-frame B_{AB}. We have also split our sample at the color of a redshifted but nonevolving Sbc galaxy, and find distinctly different luminosity functions for red and blue galaxies. Red galaxies have a shallow slope \alpha \approx -0.4 and dominate the bright end of the luminosity function, while blue galaxies have a steep \alpha \approx -1.4 and prevail at the faint end. Comparisons of the CNOC1 results to those from the Canada-France (CFRS) and Autofib redshift surveys show broad agreement among these independent samples, but there are also significant differences which will require larger samples to resolve. Also, in CNOC1 the red galaxy luminosity density stays about the same over the range z = 0.2-0.6, while the blue galaxy luminosity density increases steadily with redshift. These results are consistent with the trend of the luminosity density vs. redshift relations seen in the CFRS, though the normalizations of the luminosity densities appear to differ for blue galaxies. Comparison to the local luminosity function from the Las Campanas redshift survey (LCRS) shows that the luminosity density at z \approx 0.1 is only about half that seen at z \approx 0.4. A change in the luminosity function shape, particularly at the faint end, appears to be required to match the CNOC1 and LCRS luminosity functions, if galaxy evolution is the sole cause of the differences seen. However, it should be noted that the specific details of the construction of different surveys may complicate the comparison of results and so may need to be considered carefully.Comment: 22 pages, including 6 postscript figures, uses AASTEX v4.0 style files. Corrected minor typos and updated references. Results and conclusions unchanged. Final version to appear in the Astrophysical Journa

    Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films

    Full text link
    Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on SrTiO3 substrates, and orbital ordering and magnetic properties of the thin films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave vector (1/4 1/4 1/4) was detected by Mn K-edge resonant x-ray scattering. This peculiar orbital order inherently contains magnetic frustration. While bulk BiMnO3 is known to exhibit simple ferromagnetism, the frustration enhanced by in-plane compressive strains in the films brings about cluster-glass-like properties.Comment: 8 pages, 4 figures, accepted to Europhysics Letter

    Kpc-scale Properties of Emission-line Galaxies

    Get PDF
    We perform a detailed study of the resolved properties of emission-line galaxies at kpc-scale to investigate how small-scale and global properties of galaxies are related. 119 galaxies with high-resolution Keck/DEIMOS spectra are selected to cover a wide range in morphologies over the redshift range 0.2<z<1.3. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy we perform SED fitting per resolution element, producing resolved rest-frame U-V color, stellar mass, star formation rate, age and extinction maps. We develop a technique to identify blue and red "regions" within individual galaxies, using their rest-frame color maps. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the "main sequence" of star forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1+/-0.1 and a scatter of ~0.2 dex compared to red regions with a slope of 1.3+/-0.1 and a scatter of ~0.6 dex. The blue regions show higher specific Star Formation Rates (sSFR) than their red counterparts with the sSFR decreasing since z~1, driver primarily by the stellar mass surface densities rather than the SFRs at a giver resolution element.Comment: 17 pages, 17 figures, Submitted to the Ap
    corecore