123 research outputs found

    Evaluation of the effect of contact between risers and guide frames on offshore spar platform motions

    Get PDF
    A computer program is developed for the dynamic analysis of a spar platform coupled with mooring lines and risers in waves, winds, and currents. The new multi-contact analysis program is developed for the nonlinear multi-contact coupling between vertical risers and guide frames inside of the spar moon-pool. The program extends capability of the current coupled dynamic analysis program, WINPOST, by adding the capability of analyzing riser effects caused by the contact forces and moments from buoyancy-cans inside the spar moon-pool on the global spar motions. The gap between the buoyancy can and riser guide frames are modeled using three different types of nonlinear gap springs. The new riser model also considers the Coulomb damping between the buoyancy-cans and riser guide frames, and it also calculates the impact force on risers for use in fatigue analysis. The spar platform generally uses vertical risers with dry trees. However, as the water depth increases, the size of the buoyancy-can increases, and it makes installation more difficult. The pneumatic riser support system does not use buoyancy-cans and is an alternative solution to the buoyancy-can approach. The dynamic characteristics of pneumatic riser support system are studied by using the newly developed numerical analysis program. The damped Mathieu instability diagram for the damped Mathieu's equation is developed. Due to spar heave and pitch coupling, Mathieu's instability may become excited in long period waves. In the numerical analysis program, pitch and roll hydrostatic stiffness are recalculated for heave motion in every time step to check Mathieu's instability for the spar platform. Simplified vortex-induced vibration effects on the spar platform are considered in newly developed numerical analysis program, and the results are systematically compared with those of the original program WINPOST. The results in this paper show that the buoyancy-can effect significantly reduces the spar pitch motion, and the Coulomb damping effect also significantly reduces the spar heave motion. The buoyancy-can effect also plays an important role in Mathieu instability. The results also show that a pneumatic riser support system increases the spar heave motion and payload

    Evaluation of the effect of contact between risers and guide frames on offshore spar platform motions

    Get PDF
    A computer program is developed for the dynamic analysis of a spar platform coupled with mooring lines and risers in waves, winds, and currents. The new multi-contact analysis program is developed for the nonlinear multi-contact coupling between vertical risers and guide frames inside of the spar moon-pool. The program extends capability of the current coupled dynamic analysis program, WINPOST, by adding the capability of analyzing riser effects caused by the contact forces and moments from buoyancy-cans inside the spar moon-pool on the global spar motions. The gap between the buoyancy can and riser guide frames are modeled using three different types of nonlinear gap springs. The new riser model also considers the Coulomb damping between the buoyancy-cans and riser guide frames, and it also calculates the impact force on risers for use in fatigue analysis. The spar platform generally uses vertical risers with dry trees. However, as the water depth increases, the size of the buoyancy-can increases, and it makes installation more difficult. The pneumatic riser support system does not use buoyancy-cans and is an alternative solution to the buoyancy-can approach. The dynamic characteristics of pneumatic riser support system are studied by using the newly developed numerical analysis program. The damped Mathieu instability diagram for the damped Mathieu's equation is developed. Due to spar heave and pitch coupling, Mathieu's instability may become excited in long period waves. In the numerical analysis program, pitch and roll hydrostatic stiffness are recalculated for heave motion in every time step to check Mathieu's instability for the spar platform. Simplified vortex-induced vibration effects on the spar platform are considered in newly developed numerical analysis program, and the results are systematically compared with those of the original program WINPOST. The results in this paper show that the buoyancy-can effect significantly reduces the spar pitch motion, and the Coulomb damping effect also significantly reduces the spar heave motion. The buoyancy-can effect also plays an important role in Mathieu instability. The results also show that a pneumatic riser support system increases the spar heave motion and payload

    Modulation of Phenol Oxidation in Cofacial Dyads

    Get PDF
    The presentation of two phenols on a xanthene backbone is akin to the tyrosine dyad (Y[subscript 730] and Y[subscript 731]) of ribonucleotide reductase. X-ray crystallography reveals that the two phenol moieties are cofacially disposed at 4.35 Γ…. Cyclic voltammetry reveals that phenol oxidation is modulated within the dyad, which exhibits a splitting of one-electron waves with the second oxidation of the phenol dyad occurring at larger positive potential than that of a typical phenol. In contrast, a single phenol appended to a xanthene exhibits a two-electron process, consistent with reported oxidation pathways of phenols in acetonitrile. The perturbation of the phenol potential by stacking is reminiscent of a similar effect for guanines stacked within DNA base pairs.National Institutes of Health (U.S.) (GM5R01

    Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells

    Get PDF
    SummaryNotch signaling is critical for the stemness of radial glial cells (RGCs) during embryonic neurogenesis. Although Notch-signal-receiving events in RGCs have been well characterized, the signal-sending mechanism by the adjacent cells is poorly understood. Here, we report that conditional inactivation of mind bomb-1 (mib1), an essential component for Notch ligand endocytosis, in mice using the nestin and hGFAP promoters resulted in complete loss of Notch activation, which leads to depletion of RGCs, and premature differentiation into intermediate progenitors (IPs) and finally neurons, which were reverted by the introduction of active Notch1. Interestingly, Mib1 expression is restricted in the migrating IPs and newborn neurons, but not in RGCs. Moreover, sorted Mib1+ IPs and neurons can send the Notch signal to neighboring cells. Our results reveal that not only newborn neurons but also IPs are essential Notch-ligand-presenting cells for maintaining RGC stemness during both symmetric and asymmetric divisions

    Resting-state prefrontal EEG biomarker in correlation with postoperative delirium in elderly patients

    Get PDF
    Postoperative delirium (POD) is associated with adverse outcomes in elderly patients after surgery. Electroencephalography (EEG) can be used to develop a potential biomarker for degenerative cerebral dysfunctions, including mild cognitive impairment and dementia. This study aimed to explore the relationship between preoperative EEG and POD. We included 257 patients aged >70 years who underwent spinal surgery. We measured the median dominant frequency (MDF), which is a resting-state EEG biomarker involving intrinsic alpha oscillations that reflect an idle cortical state, from the prefrontal regions. Additionally, the mini-mental state examination and Montreal cognitive assessment (MoCA) were performed before surgery as well as 5 days after surgery. For long-term cognitive function follow up, the telephone interview for cognitive statusβ„’ (TICS) was performed 1 month and 1 year after surgery. Fifty-two (20.2%) patients were diagnosed with POD. A multivariable logistic regression analysis that included age, MoCA score, Charlson comorbidity index score, Mini Nutritional Assessment, and the MDF as variables revealed that the MDF had a significant odds ratio of 0.48 (95% confidence interval 0.27–0.85). Among the patients with POD, the postoperative neurocognitive disorders could last up to 1 year. Low MDF on preoperative EEG was associated with POD in elderly patients undergoing surgery. EEG could be a novel potential tool for identifying patients at a high risk of POD

    Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development

    Get PDF
    Notch signaling regulates lineage decisions at multiple stages of lymphocyte development, and Notch activation requires the endocytosis of Notch ligands in the signal-sending cells. Four E3 ubiquitin ligases, Mind bomb (Mib) 1, Mib2, Neuralized (Neur) 1, and Neur2, regulate the Notch ligands to activate Notch signaling, but their roles in lymphocyte development have not been defined. We show that Mib1 regulates T and marginal zone B (MZB) cell development in the lymphopoietic niches. Inactivation of the Mib1 gene, but not the other E3 ligases, Mib2, Neur1, and Neur2, abrogated T and MZB cell development. Reciprocal bone marrow (BM) transplantation experiments revealed that Mib1 in the thymic and splenic niches is essential for T and MZB cell development. Interestingly, when BM cells from transgenic Notch reporter mice were transplanted into Mib1-null mice, the Notch signaling was abolished in the double-negative thymocytes. In addition, the endocytosis of Dll1 was impaired in the Mib1-null microenvironment. Moreover, the block in T cell development and the failure of Dll1 endocytosis were also observed in coculture system by Mib1 knockdown. Our study reveals that Mib1 is the essential E3 ligase in T and MZB cell development, through the regulation of Notch ligands in the thymic and splenic microenvironments

    Provisional drug-coated balloon treatment guided by physiology on de novo coronary lesion

    Get PDF
    Although drug-eluting stents (DES) have become the mainstay of percutaneous coronary intervention, late and very late stent thrombosis remains a concern. Drug-coated balloons (DCB) have the advantage of preserving the anti-restenotic benefits of DES while minimizing potential long-term safety concerns. Currently the two methods to ensure successful DCB treatment of a stenotic lesion are angiography or physiology-guided DCB application. This review will evaluate these two methods based on previous evidence and make suggestions on how to perform DCB treatment more efficiently and safely

    Dissolution of Metals from Biosolid-Treated Soils by Organic Acid Mixtures

    Get PDF
    Results for the solubilization of metals from biosolid- (BSL-) treated soils by simulated organic acid-based synthetic root exudates (OA mixtures) of differing composition and concentrations are presented. This study used two BSL-treated Romona soils and a BSL-free Romona soil control that were collected from experimental plots of a long-term BSL land application experiment. Results indicate that the solubility of metals in a BSL-treated soil with 0.01 and 0.1 M OA mixtures was significantly higher than that of 0.001 M concentrations. Differences in composition of OAs caused by BSL treatment and the length of growing periods did not affect the solubility of metals. There were no significant differences in organic composition and metals extracted for plants grown at 2, 4, 8, 12, and 16 weeks. The amount of metals extracted tended to decrease with the increase of the pH. Results of metal dissolution kinetics indicate two-stage metal dissolution. A rapid dissolution of metals occurred in the first 15 minutes. For Cd, Cu, Ni, and Zn, approximately 60–70% of the metals were released in the first 15 minutes while the initial releases for Cr and Pb were approximately 30% of the total. It was then followed by a slow but steady release of additional metals over 48 hours
    • …
    corecore