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ABSTRACT 

 

Evaluation of the Effect of Contact between Risers and Guide Frames on  

 Offshore Spar Platform Motions. (August 2003) 

Bon-Jun Koo, B.S.; M.S., Inha University 

Co-Chairs of Advisory Committee: Dr. Robert E. Randall 
                           Dr. Moo-Hyun Kim 

 

A computer program is developed for the dynamic analysis of a spar platform coupled 

with mooring lines and risers in waves, winds, and currents. The new multi-contact 

analysis program is developed for the nonlinear multi-contact coupling between vertical 

risers and guide frames inside of the spar moon-pool. The program extends capability of 

the current coupled dynamic analysis program, WINPOST, by adding the capability of 

analyzing riser effects caused by the contact forces and moments from buoyancy-cans 

inside the spar moon-pool on the global spar motions. The gap between the buoyancy can 

and riser guide frames are modeled using three different types of nonlinear gap springs. 

The new riser model also considers the Coulomb damping between the buoyancy-cans and 

riser guide frames, and it also calculates the impact force on risers for use in fatigue 

analysis. 

The spar platform generally uses vertical risers with dry trees. However, as the water 

depth increases, the size of the buoyancy-can increases, and it makes installation more 

difficult. The pneumatic riser support system does not use buoyancy-cans and is an 

alternative solution to the buoyancy-can approach. The dynamic characteristics of 

pneumatic riser support system are studied by using the newly developed numerical 
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analysis program. 

The damped Mathieu instability diagram for the damped Mathieu’s equation is 

developed. Due to spar heave and pitch coupling, Mathieu’s instability may become 

excited in long period waves. In the numerical analysis program, pitch and roll hydrostatic 

stiffness are recalculated for heave motion in every time step to check Mathieu’s instability 

for the spar platform. Simplified vortex-induced vibration effects on the spar platform are 

considered in newly developed numerical analysis program, and the results are 

systematically compared with those of the original program WINPOST.  

The results in this paper show that the buoyancy-can effect significantly reduces the 

spar pitch motion, and the Coulomb damping effect also significantly reduces the spar 

heave motion. The buoyancy-can effect also plays an important role in Mathieu instability. 

The results also show that a pneumatic riser support system increases the spar heave 

motion and payload. 
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CHAPTER I 

 

1. INTRODUCTION 

 

1.1. General 

 

As the search for oil and gas progresses into deep waters (>610 m (2000 ft)), it is 

expected that pile-supported platforms will not be used. The maximum water depth 

generally considered for fixed platforms is 366 m (1,200 ft) – 457 m (1,500 ft) primarily 

due to the cost of fabrication and installation constraints. A comparison of the relative cost 

trends for pile supported platforms, compliant towers, and tension leg platforms for the 

Gulf of Mexico, is shown in Fig. 1.1.  
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Fig. 1.1. Platform cost comparison, Gulf of Mexico (Günther et al, 1988). 
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However, new types of platforms such as tension leg platform (TLP), 

semisubmersible (FPS), floating production storage and offloading (FPSO) and spar offer 

promise of extending platform capability significantly into deeper water. These are loosely 

identified as compliant structures or floating structures, which are designed to move with 

the forces of wind, wave, and current, and are restrained with a mooring system rather than 

rigidly resist them. 

After the middle of the 1990’s, oil and gas fields progressed into deep water 914 m 

(3000 ft) – 3048 m (10,000 ft). For this range of water depth, classical spar, truss spar, 

semisubmersible and FPSO are common concepts used for developing oil and gas fields. 

The spar platform has been considered as a competitive alternative for deep water oil 

and gas filed development. Among the various hull types of a spar, the classical spar and 

the truss spar are the most attractive concepts for deep and ultra deep water production 

platforms. Fig. 1.2 shows a classical spar production platform and a truss spar production 

platform. 

The classical spar production platform is a large circular cylinder with constant cross 

section and with a draft of approximately 198 m (650 ft). The idea behind this concept, or 

rather what is justifying the use of this enormous hull, is that due to the large draft the 

heave and pitch motion response of the platform is small enough to permit installation of 

rigid risers with dry trees. 

The truss spar production platform is the latest developed concept that replaces the 

cylindrical lower section of a classical spar with an open truss structure that includes heave 

plates. One of the principle advantages of the truss spar is lower unit fabrication cost than 

the bottom section of a classical spar. The truss section of the truss spar decreases the hull 
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construction costs by 20% to 40% (Magee et al., 2000). The idea behind this concept is 

that the truss section is relatively transparent to the ambient current, resulting in 

considerably less surge offset and mooring requirement, and the series of heave plates of 

truss spar are designed to reduce heave motion by increasing the added mass and 

hydrodynamic damping. The truss spar also has less vortex-induced vibration compared 

with classical spar. 

 

 

 

 

 

 

 

 

Fig. 1.2. Example Pictures of classical spar (left) and truss spar (right) (Courtesy, J. 

Ray McDermott). 

 

One of the advantages of the spar platform (classical and truss spar) is its natural 

frequency is not nears the peak frequency of the dominant wave energy. However, wave 

and wind loads can excite large amplitude resonant motion and tension responses in 

mooring lines, most notably due to second order low-frequency effects. The contribution of 

the second order loads to the motions and tensions plays an important role in the platform 

design. Thus, dynamic analysis based on a reliable technique should be used for analyzing 
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spar production platform. The relevant theory and comparisons are summarized in Ran et 

al. (1995), Mekha et al. (1995), Cao and Zhang (1996), Kim et al. (1997), and Ran and 

Kim (1997). In offshore industry, the design of riser and mooring lines has mostly been 

based on either uncoupled quasi-static analysis (model mooring and riser as massless linear 

or nonlinear spring, calculate hull responses, and estimate the mooring tension from static-

mooring load) or semi-coupled dynamic analysis (model mooring and riser as massless 

linear or nonlinear spring, calculated motions at the fairlead, and run line dynamics 

program for each mooring line). As the water depth greatly increases, more inertia and 

damping effects can come from mooring lines and risers. Under this circumstance, 

uncoupled analysis methods may lead to inaccurate results. The reliability of those 

uncoupled or semi-coupled approximation methods have been checked against model test 

data. However, the existing wave basin has depth limitation and the riser and mooring lines 

have to be truncated in the scale model testing thus not representing the actual 

contributions of mooring lines and riser. Thus, a reliable coupled dynamic analysis of the 

floating platform systems is more and more important with increasing water depth. Time 

domain coupled analysis methods of floating platform and mooring lines have been 

reported by many researchers (Paulling and Webster, 1986, Kim et al., 1994, Kim et al., 

1997 and 2001, Ma et al., 2000, and Gupta et al., 2000). Paulling and Webster (1998) and 

Kim et al. (1994) conducted coupled analysis for TLP response. Gupta et al. (2000) 

showed coupled analysis in spar design. Ma et al. (2000) showed coupled analysis in both 

spar and TLP. In particular, Ran and Kim (1997) developed a very efficient 3-D 

hull/mooring/riser coupled dynamics program “WINPOST” based on a global-coordinate-

based finite element methods (FEM), which was originally introduced by Garrett (1982). 
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The WINPOST is a time-domain program for the hull/mooring/riser coupled 

static/dynamic analysis of compliant offshore structures. In WINPOST, the platform is 

assumed to be a rigid body under going motion in waves, winds, and currents, and linear 

translational/rotational springs and linear translational dampers model the connections 

between the platform and the mooring lines and risers. The classical spar platform, which 

is the target structure in this research, generally uses rigid vertical riser systems. The 

vertical riser system is generally supported by a freely floating buoyancy-can near the top 

of the riser and it posses through a series of riser guide frames. Fig. 1.3 shows the general 

configuration of the spar buoyancy-can supported vertical riser system for a spar platform. 

In the previous WINPOST model, the riser system includes a buoyancy-can is 

modeled as truncated simplified elements. The risers are modeled up to the spar keel and 

the buoyancy-cans effects are approximately induced in the hull restoring coefficient 

matrix (Tahar et al., 2002). The truncated riser model with approximated buoyancy-can 

connection cannot accurately model the interaction and gap effects between risers and 

support guide frames inside of the spar moon-pool. The truncated riser system also ignores 

the Coulomb friction between risers and support guide frames. Thus, the truncated riser 

system ignores additional restoring force and coulomb damping effects from interaction 

between risers and support guide frames, and this model overestimates the global spar 

motion. Thus, in the first part of this study, contact forces between the riser buoyancy-cans 

and riser support guide frames are modeled. In the new multi-contact model, the risers are 

modeled as an elastic rod extended through the moon-pool, and the series of guide frames 

are modeled as a horizontal spring with a large spring constant, thus the additional 

restoring force and moment form interaction between buoyancy-cans and guide frames on 
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the global spar motion are considered. The properties of the riser inside spar hull and 

buoyancy-cans including buoyancy are accurately modeled and the gap between the 

buoyancy can and riser guide frames are also modeled using four different types of spring 

connections. The new multi-contact riser model also considers the coulomb friction 

between the buoyancy-cans and riser guide frames. For simplification, the additional 

excitation on risers from moon-pool sloshing and riser-riser interactions are not considered 

in this study. 

 

Riser Guide Frame

Buoyancy-can

Dry Tree

Production
Manifold

Gap between
Buoyancy can and
Riser Guide FrameTop View of

Guide Frame

Buoyancy-can

Buoyancy
Tank

Soft Tank

Hard Ballast
Tank

 
Fig. 1.3. Schematic drawing of spar riser system with buoyancy-can. 

 

As the water depth of oil and gas fields is getting deeper, the length of the risers must 

increase, and the required buoyant force to support the rigid riser system must increase. 

Due to large buoyant force, the size of the buoyancy-can is large, and it makes installation 
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difficult, particularly from a safety standpoint. The alternative concept for riser support 

system is pneumatic cylinders. The function of pneumatic cylinder is to maintain the riser 

tension. Fig. 1.4 shows the pneumatic riser support system. In the second part of the study, 

the risers inside of the spar are fully modeled with pneumatic cylinders, and the results are 

compared with buoyancy-can supported model. The results may help to understand the 

alternate riser support system. 

 

 

Fig. 1.4. Pneumatic Riser Support System (Courtesy, Aker Maritime). 

 

In the third part of the study, the Mathieu’s instability for the spar platform is checked 

by Mathieu instability diagram. The Mathieu instability diagram is generated by the 

Mathieu equation with Hill’s infinite determinant methods (Jordan and Smith, 1977). 

Mathieu instability arises when there is a harmonic variation in the coefficients of a second 

order nonlinear difference equation. In the spar platform, it is well known that the pitch 
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motion is coupled with heave motion. The pitch restoring coefficient can be represented by 

a function of the displaced volume and the metacentric height. Due to heave motion, the 

displaced volume and the metacentric height of the spar platform are changed and this 

heave/pitch coupling can be represented by Mathieu’s equation. In this part of the study, 

the Mathieu type instability for the spar platform is checked under long period regular 

wave environment as well as the West Africa and North Sea swell condition. 

In the last part of the study, the simplified vortex induced vibration effects on the spar 

platform are considered. Vortex induced vibration effect is not significant in the hurricane 

condition, but is very important in the loop current condition. WINPOST uses piece-wise 

linear current velocity profile. Under this situation, the spar hull has single vortex shedding 

frequency at each depth. Thus, the vortex-induced vibration can be approximated as a 

sinusoidal force in the lift direction on the spar hull. The loop current condition in Gulf of 

Mexico is considered in this part of the study. 

 

1.2. Literature Review 

 

The research interest on the spar platform has evolved during the 1990’s. A number of 

investigators have studied separately several aspects of the spar platform coupled motion 

analysis with mooring lines and risers. The existing literature has shown the importance of 

coupled analysis and the various nonlinear effects in the calculation of the spar motion 

analysis. 

Besides the coupled motion analysis of the spar platform, various studies were 

completed to investigate the wave structure interaction. Mekha et al. (1995, 1996) and 
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Johnson et al. (1996) performed time domain analyses for the spar platform in regular and 

irregular waves using Morison’s equation. Their studies illustrated the importance of the 

different nonlinear effects. Weggel and Roesset (1996a, 1996b) did similar work using 2nd 

order diffraction theory implementing WAMIT (Lee, 1995), TFPOP (Ude et al. 1996), as 

well as an approximation by Donley and Spanos (1990). Zhang et al. (1995), Cao and 

Zhang (1996) used the Hybrid Wave Model (HWM) for irregular wave up to 2nd order and 

demonstrated the importance of accurate wave-kinematics in predicting the nonlinear 

response of the spar platform. Ran et al. (1995) used diffraction theory and boundary 

elements (as in WAMIT) to study the behavior of the spar platform in the time domain 

using 2nd order forces. 

The development of an equation of motions for elastic rods and its computational 

analysis using finite difference method and finite element method was initiated by 

Nordgren (1974) and Garret (1982). Garret (1982) developed a finite element model of 

inextensible elastic principle stiffness. Using generalized coordinates, the model permits 

large deflections and finite rotation and accounts for the tension variation along its length. 

Chen et al. (2001) developed equation of motion of elastic rods based on large strain 

assumption. Ran and Kim (1997) and Kim et al. (2001a, 2001b) completed several 

coupled-dynamic analyses, and they did some studies on spars and TLPs using a very 

efficient program, WINPOST. A comparison between time- and frequency-domain analysis 

was also investigated by Ran et al. (1999). The time-domain analysis can simulate the 

nonlinear effect without linearization and generally produces large wave-frequency and 

slowly varying responses and mooring tension better than the frequency-domain analysis. 

Prislin et al. (1999) discusses the full-scale measurement of the Oryx Neptune Spar 
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platform performance, and they discussed measured and predicted Neptune Spar motions 

during two storms during September 1998, hurricanes Earle and Georges. The 

measurement results show that the Neptune Spar motions are lower than predicted by 

physical model test and analytical tools. A possible reason for the difference is that the 

buoyancy-can effects in the spar moon-pool have been ignored in the experiment and 

analysis. Gupta et al. (2000) shows buoyancy-can effects on the global spar motions 

analysis. However they use three different programs to simulate the buoyancy-can effects, 

and thus the analysis processes are very complicated. In Tahar et al. (2002), the interaction 

effects between risers and riser guide frames are modeled as a simple inverted pendulum 

model as well as more rigorous riser modeling through riser guides inside the moon-pool. 

The interaction between risers and riser guide frames are modeled by Tahar et al. (2002), as 

horizontal springs with large stiffness to restrict the horizontal motion of the risers while 

allowing them to move freely in vertical direction. Zhang and Zou (2002) also considered 

the risers and riser guide frames effect on the global spar motion. Tahar et al. (2002) and 

Zhang and Zou (2002) results clearly show the buoyancy-can effect reduces the global spar 

motion, particularly in pitch. However, in the actual system the interaction between riser 

buoyancy-can and riser guide frame is gap contact. The horizontal connected spring 

ignores the gap contact effect between riser and riser guide frame. In the previous studies 

(Gupta et al. (2000), Tahar et al. (2002), and Zhang and Zou (2002)) did not consider the 

gap effects on the global spar motion as well as the buoyancy-can. The contact-induced 

force between riser and riser guide frame also adds Coulomb damping to spar motions in 

vertical direction. Gupta et al. (2000) and Zhang and Zou (2002) consider Coulomb 

damping effects in their study. Gupta et al. (2000) clearly showed that the Coulomb 
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damping reduces the spar heave motion, but results from Zhang and Zou (2002) showed 

that the Coulomb damping do not change heave motion significantly.  

The pitch and heave coupling can be represented by a damped Mathieu’s equation.  

Haslum and Faltinsen (1999) checked the Mathieu’s instability in pitch motion combined 

with extreme amplitude heave resonance using a model test and simplified calculations. 

They showed a stability diagram for Mathieu’s equation without considering pitch 

damping effects. Rho et al. (2002) also checked Mathieu’s instability by model test and 

numerical calculation. They performed model tests for a spar platform with a moon-pool, 

helical strakes, and damping plates to see the effect of each case. Their studies show that 

the additional damping from heave plates and helical strake reduce the heave motion and 

experimentally confirmed the heave/pitch coupled non-linear motion for spar platforms. 

However, Haslum and Faltinsen (1999) and Rho et al. (2002) experiment did not 

considered hull/mooring/riser coupling effects. In their experiment, the spar model has 

very small KB (i.e. distance between buoyancy center and keel). The real spar platform has 

large KB (=164m). The location of the buoyancy tank in the real spar platform is located in 

upper part of the spar hull and the lower part of the hull is a hollow cylinder without a 

bottom. Thus, the center of buoyancy of the spar platform is located in upper one-third part 

of the spar hull, and it increases the metacentric height. Zhang et al. (2002) extended their 

studies to include pitch damping effects and developed a damped Mathieu’s stability 

diagram for Mathieu’s equation.  
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1.3. Objective and Scope 

 

Despite the considerable amount of analytical and experimental studies conducted on 

the spar platform, there is still a need to compare and correlate the results obtained by 

various approaches. The main objectives of this study are to investigate the differences and 

increase the accuracy of the coupled analysis to predict for the global spar platform 

motions. As mentioned in section 1.2, the first part of this study discusses about buoyancy-

can effects on the global spar motions. The newly developed numerical analysis program 

includes: 

• multi-contact coupling effect for modeling the buoyancy-can effects on the 

global spar motions. 

• a series of guide frames are modeled by four different spring connections (i.e. 

connected spring, piecewise-linear gap-contact spring, piecewise-quadratic 

gap-contact spring, and cubic spring) to evaluate the gap contact effects on the 

global spar motions as well as the buoyancy-cans  

• Coulomb friction effects are modeled between buoyancy-cans and riser guide 

frames to evaluate the Coulomb damping effects on the global spar motions.  

To capture the buoyancy-can effects (i.e. multi-contact coupling between buoyancy-can 

and guide frames which includes gap boundary condition and Coulomb friction) on the 

global spar motion, four comparison studies are conducted as follows: 

• extended riser model (i.e. consider buoyancy-can effects) versus truncated 

riser model. 

• four different guide frame models (i.e. connected spring, piecewise-linear 
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gap-contact spring, piecewise-quadratic gap-contact spring, and cubic spring) 

are compared case by case. 

• Coulomb damping effects versus without Coulomb damping effects. 

• compare the results with existing experimental and simulation results. 

From these comparison studies, the newly developed numerical analysis program that 

includes buoyancy-can effects will be verified. 

In the second part of this study, an alternative riser support system (i.e. pneumatic 

cylinder) is modeled in the newly developed numerical analysis program. The comparison 

study is conducted between buoyancy-can riser support system and pneumatic riser support 

system. Their different dynamic characteristics are extensively studied, and the feasibility 

of the pneumatic riser support system is discussed in this part of study. 

In the third part of this study, the Mathieu’s instability for a spar platform is discussed. 

In the newly developed numerical analysis program, the pitch/roll hydrostatic coefficients 

are recalculated for heave motion at each time step. As mentioned in section 1.2, the pitch 

damping effects on the Mathieu instability are extensively studied by following procedure: 

• develop damped Mathieu stability diagram 

• regular wave simulations are conducted for a spar platform without mooring 

lines and risers with different spar hull CD (drag coefficient) values 

• regular wave simulations are conducted for a spar platform with mooring lines 

and risers 

Based on the regular wave simulation results, the Mathieu instability in the swell 

wave condition is checked.  

In the last part of this study, the vortex-induced vibration (VIV) effects on a spar 
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platform are studied. In the newly developed numerical program, the VIV is modeled as a 

harmonic lift force. The comparison study between with- and without-VIV effects are 

conducted for loop current condition in Gulf of Mexico, and a parametric study is 

conducted to evaluate the effect of different Strouhal number and lift coefficients. 

 

1.4. Organization 

 

In Chapter II, the dynamics of a floating platform are discussed. The linear and 

nonlinear wave kinematics theory as well as first- and second-order hydrodynamic forces 

and moments are explained in the first part of the Chapter II. The theoretical formulation 

and numerical implementation in the time domain for a spar platform are discussed in the 

second part of the Chapter II. The simplified vortex induced vibration effect on the spar 

platform is discussed in the third part of the Chapter II. The fourth part of the Chapter II 

discusses the Mathieu’s instability problem for the spar platform. 

In Chapter III, the dynamics of the mooring lines and risers are explained. The finite 

element modeling for mooring lines and risers in static and time-domain analysis are 

described.  

In Chapter IV, the integrated modeling of the floating platform and mooring/riser 

system is discussed. The static and dynamic formulations of a single point spring-damper 

connection between the platform and mooring lines are discussed in the first part of this 

Chapter. In the second part, the static and dynamic formulations of multi-contact coupling 

between riser/buoyancy-can and riser guide frame are discussed with four different guide 

frame models (i.e. connected spring model, piece-wise linear gap spring model, piece-wise 
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quadratic gap spring model and cubic spring approximation model). In the third part, 

dynamic formulation of Coulomb damping between riser/buoyancy-can and guide frame is 

explained. In the last part of this chapter, the formulation for pneumatic cylinder riser 

support system is explained. 

In Chapter V, a series of free decay simulations and 100-year hurricane simulations 

are conducted to check the buoyancy-can effects (i.e. multi-contact riser and Coulomb 

damping) on the spar platform. In the free decay simulations, the natural periods and the 

damping ratios of the newly developed models are obtained, and the results are 

systematically compared. The 100-year hurricane simulations show dynamic analysis of a 

spar platform in non-collinear wind, wave, and current condition. In the 100-year hurricane 

simulations, the buoyancy-can effects are clearly shown by a rational comparison of each 

case. 

In Chapter VII, Mathieu’s instability is checked for a spar platform. The parametric 

study is performed based on newly generated damped Mathieu’s diagram. In this chapter, 

simulations are conducted by regular wave as well as swell condition. In the simulation, 

the uncoupled spar (without mooring/riser) and fully coupled spar (with mooring/riser) are 

compared to show the hull/mooring/riser coupling effects on suppressing the Mathieu’s 

instability. In Chapter VIII, the loop current condition is conducted to show the vortex 

induced vibration effect on the global spar motion. Finally, the findings and possible 

extensions are summarized in Chapter IX.  
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CHAPTER II 

 

2. DYNAMICS OF THE FLOATING PLATFORM 

 

2.1. Introduction 

 

The wave loads and dynamic response of the floating structure are reviewed in this 

chapter. Linear and second order wave theories are reviewed first, then first- and second-

order potential forces on the floating structures are reviewed. Finally, the dynamics of a 

floating structure are discussed. In this chapter, the heave and pitch coupling by time 

varying restoring coefficients for floating structures are presented. Discussion is presented 

as necessary and more detailed theory should be referred to the references.  

 

2.2. Wave Theory 

 

The derivation of the linear wave theory is start with establishing and solving 

boundary value problems with linearized kinematics and dynamic free surface boundary 

conditions. The second-order Stokes wave theory is extended from the linear wave theory 

by perturbation of linearized boundary conditions up to second order. Both wave theories 

are based on irrotational motion, incompressible fluid, and continuous flow assumptions.  

Ignorance of the viscous effects, the boundary value problem can be expressed by velocity 

potential function )z,y,x(Φ . From the velocity potential function, the velocity vectors 

and pressure in the fluid domain can be expressed by 
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where u, v, w represent particle velocity vectors with respect to x-, y-, and z- axis in 

Cartesian coordinate system. The coordinate system is defined as origin is at mean water 

level, z is positive upward and the origin of the x and y axis are on the water surface 

following the right hand rule. The pressure p in the fluid filed in the equation (2.2) is 

comes from Bernoulli equation. ρ and g represent fluid density and gravitational 

accelerations.  

Based on irrotational motion, incompressible fluid, and continuous flow assumptions 

boundary conditions must satisfy the Laplace equation: 

02 =Φ∇      (2.3) 

To solve the Laplace equation, the proper boundary condition in the domain should be 

defined. The common boundary conditions for ocean water wave problem are described in 

following equations.  

Bottom boundary condition: 

0
z

=
∂
Φ∂   at dz −=   (2.4) 

where -d is water depth. This boundary condition is from flat bottom with impermissible 

assumption of the ocean bottom. At the free surface, the wave is governed by kinematics 

and dynamic free surface boundary conditions.  
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Free surface boundary condition:  

 

1) kinematics free surface boundary condition 
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 2) dynamic free surface boundary condition  
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ρ  at η=z   (2.6) 

 

where )t,y,x(η  represent free surface elevation as function of spatial and time. The 

kinematics boundary conditions states that the particle on the free surface at one instant of 

time will continue to stay on the free surface and the dynamics boundary condition is based 

on the assumption that the pressure at the free surface is constant and equal to atmospheric 

pressure. Due to nonlinear terms in free surface boundary condition and additional 

nonlinearity, the exact solution for the velocity potential in the Laplace equation with the 

described boundary conditions difficult to obtain. The most popular approach to solve this 

problem is small amplitude wave theory with perturbation methods. From small amplitude 

wave theory, the approximated solution of the certain order of accuracy can be obtained. 

As mentioned before, the linear wave theory uses linearized boundary condition, which 

considers first order only. The second order wave theory considers up to second order 

terms from the perturbation. Thus, the obtained velocity potential from second order theory 

includes the first order solution as well. The following equations show the first- and 

second-order velocity potentials and wave elevations. 
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First-order velocity potential: 
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Second-order velocity potential: 





 +

ω−=Φ ω−θ+θ )t2sinky2coskx2(i
4

2)2( e
kdsinh

)dz(k2coshA
8
3Re   (2.8) 

First-order free surface elevation: 

)tsinkycoskxcos(A)1( ω−θ+θ=η     (2.9) 

Second-order free surface elevation: 

)t2sinky2coskx2cos(
kdsinh
kdcoshA 3

2)2( ω−θ+θ=η    (2.10) 

where θ is the incident wave angle, A is the wave amplitude, ω is the wave frequency, and 

k is the wave number.  

In the real ocean, the waves are random and irregular. A fully developed wave 

condition can be modeled as energy spectra described ensemble of regular wave trains 

combining in the random phases. Especially wind-driven wave height can be approximated 

by Rayleigh distribution. Several different wave spectra used in ocean engineering design 

of offshore facilities. Three of these spectra include the Pierson- Moskowitz, JONSWAP 

(Joint North Sea Wave Project), and ITTC (International Towing Tank Conference). To 

describe the wave energy distribution based on the wind velocity, significant wave height 

and peak wave period.  

The random wave time series from a given wave spectrum )(S ω  can be generated by 

superposition of a large number of linear wave component with random phases 

∑ ∑
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where ω∆ω= )(S2A ii , N and ∆ω are the number of wave components and interval of 

frequency division, and εi is a random phase angle. To avoid the increase of wave 

components for long simulation, equation (2.11) can be modified as  









=η ∑
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i

i
'
iieARe)t,x(     (2.12) 

where ii
'
i δω+ω=ω  and iδω  is random perturbation number uniformly distributed 

between 2ω∆−  and 2ω∆ . The random wave velocity and acceleration can be obtained 

in a similar manner.  

 

2.3. Wave and Current Loads on Structures 

 

In deep water, the platform is usually a large-displacement floating structure (e.g. TLP, 

classical spar, and tanker based FPSO) and due to the large volume and water plane area, 

most of offshore structures are in the diffraction regime. Therefore, The diffraction theory 

is the most appropriate methods to predict the wave load on the offshore platform. On the 

other for structure with slender member (e.g. truss member on spar) the Morison’s equation 

is also widely used. Thus, in this section, both the diffraction theory and Morison’s 

equation are discussed.  

 

2.3.1. Diffraction and Radiation Theory 

 

In this section, the boundary value problem for the interactions of incident waves with 

a large three-dimensional body is reviewed. As mentioned before, the hydrodynamic 
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coefficient and the wave exciting force and moment on large floating structures can be 

obtained using three dimensional first- and second- order diffraction theory. As mentioned 

in section 2.2, the incident wave velocity potential ( IΦ ) satisfy the Laplace equation, 

bottom boundary condition and free surface boundary condition (e.g. equation (2.3), (2.4), 

(2.5), and (2.6)). When a three-dimensional body interacts with incident waves in the fluid 

domain, two more velocity potentials occur during the interaction. The first additional 

velocity potential is the diffraction potential ( DΦ ), which represents the scattered wave 

due to presence of the body. The second additional velocity potential is the radiation 

potential ( RΦ ), which represents the waves generated by the body motion in calm water. 

To solve the fluid body interaction, two more boundary conditions must added. The first 

additional boundary condition is called the body boundary condition, which represents 

body surface with normal vector n , and the second additional boundary condition, is 

called the Sommerfield radiation condition, which represents the decay and vanish of the 

diffraction and radiation potential at the great distance from the structure. Therefore, the 

total velocity potential up to second order can be written as: 

∑
=

Φε=Φ
2

1n

)n(n = ( )∑
=

Φ+Φ+Φε
2

1n

)n()n()n(n
RDI

   (2.13) 

where ε is a non-dimensional perturbation parameter that is equal to the wave stiffness. In 

the first order, the diffraction potential, )1(
DΦ , represents the scattered wave due to the 

presence of the fixed body, and the radiation potential, )1(
RΦ , represents the radiated wave 

due to the first order body motion in the calm water. In the second order, )2(
DΦ  represents 

the combined diffracted potential due to the presence of the second order incident wave as 

well as the forcing due to all the quadratic contributions of the first order quantities on the 

free surface and on the body (i.e. a second order problem for a body either fixed or 
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undergoing first order motion only). The radiation potential, )2(
RΦ , represents the out going 

wave due to the second order motions only in calm water. Therefore, )2(
IΦ  and )2(

DΦ  give 

the total excitation force on the second order body motions, and )2(
RΦ  is identical to that 

of a first order problem but at the respective sum and difference frequency. The following 

equations show the body surface boundary condition and Sommerfield radiation condition.  

Body boundary condition: 

nV
n

=
∂
Φ∂   on body surface    (2.14) 

where nV  is the normal velocity of the body at its surface 

 

Sommerfield radiation condition: 

D,R
D,Rr

lim r ik 0
r→∞

∂φ 
± φ = ∂ 

   (2.15) 

where r is the radial distance from the center of the body. 

 

2.3.2. First-and Second-order Boundary Value Problem 

 

As mentioned in section 2.3.1., a body interacting with incoming monochromatic 

incident waves can be analyzed as a first-order boundary value problem. The total potential 

solution is written as:  

( )
{ }

I D R

(1) (1) (1) (1)

(1) (1) (1) i t
I D R       =Re (x, y, z) (x, y, z) (x, y, z) e− ω

Φ = Φ + Φ + Φ

 φ + φ + φ 
  (2.16) 

The incident wave potential from x, y → ∞  is given from linear wave theory and 

rewritten again: 
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(1) i(kx cos kysin t )
I

igA cosh k(z d)Re e
cosh kd

θ+ θ−ω+ φ = − ω 
  (2.17) 

The boundary value problems for the first-order diffraction and radiation potentials are 

defined as: 

2 (1)
D,R 0∇ φ =     in the fluid (z < 0)  (2.18) 

2 (1)
D,Rg 0

z
∂ −ω + φ = ∂ 

   on the free surface (z = 0) (2.19) 

(1)
D,R 0
z

∂φ
=

∂
    on the bottom (z = -d)  (2.20) 

(1) (1)
D I

n n
∂φ ∂φ

=
∂ ∂

   on the body surface  (2.21) 

( )
(1)

(1) (1)R i
n

∂φ
= − ω ⋅ + ×

∂
n ξ α r  on the body surface  (2.22) 

D,Rr
lim r ik 0

r→∞

∂ ± φ = ∂ 
  at far field   (2.23) 

where r is the position vector on the body surface, x y z(n , n ,n )=n is the outward unit 

normal vector on the body surface. The first-order motion of the body in the translational 

( )(1)Ξ  and rotational ( )(1)α  directions can be written as: 

{ }(1) (1) i tRe e− ω=Ξ ξ   { }(1) (1) (1) (1)
1 2 3, ,= ξ ξ ξξ   (2.24) 

{ }(1) (1) i tRe e− ω=α α   { }(1) (1) (1) (1)
1 2 3, ,= α α αα   (2.25) 

where subscript 1,2 and 3 represent translational (surge, sway and heave) and rotational 

(roll, pitch and yaw) modes with respect to the x-, y-, and z-axis, respectively. To simplify 

the notation of motion, the first order six-degree of freedom can be rewritten as: 

(1)
i iς = ξ   for i = 1,2,3   (2.26) 

(1)
i i 3−ς = α  for i = 1,2,3   (2.27) 
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The radiation potentials in terms of the velocity potential of the rigid body motion ( )(1)
iφ  

can be written as:  
6

(1) (1)
R i i

i 1=

φ = ς φ∑      (2.28) 

where (1)
iφ  represents the velocity potential of the rigid body motion with unit amplitude 

in the i-th mode in the absence of incident waves. These potentials must satisfy the free 

surface boundary condition, bottom boundary condition, far field radiation boundary 

condition, and the body boundary condition. Substituting (1)
iφ  into equation (2.22), the 

body boundary condition can be re-written as: 
(1)
i

in
n

∂φ
=

∂
     (2.29) 

( )
(1)
i

i 3n −

∂φ
= ×

∂
r n      (2.30) 

on the body surface(SB). 

Since the decomposition of the total potential is not unique, the diffraction potential 

( (2)
Dφ ) and the radiation potential ( (2)

Rφ ) are defined as mentioned in section 2.3.1. In the 

presence of two plane incident waves of frequency lω  and jω  the second order potential 

can be written as  

( ) ( ){ }
2 2

(2) i t i t

j 1 i 1
(x, t) Re x e x e

− +− − ω + − ω

= =

Φ = φ + φ∑∑   (2.31) 

where j i
−ω = ω − ω  and j i

+ω = ω + ω . The sum- and difference-frequency of the second-

order incident wave potentials can be written as: 

( ) ik x
I jl lj

1 cosh k (z d) e
2 cosh k h

+
+

+ + +
+

+
φ = γ + γ    (2.32) 
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where 
( ) ( )2 2

j j j l j lj
jl

j

k 1 tanh k h 2k k 1 tanh k h tanh k higA
2 k tanh k h

+
+ + +

− − +−
γ =

ω ν −
 and  

( )* ik x
I jl lj

1 cosh k (z d) e
2 cosh k h

−
−

− − −
−

+
φ = γ + γ    (2.33) 

where 
( ) ( )j

* 2 2
j j j l j l

jl
j

igA k 1 tanh k h 2k k 1 tanh k h tanh k h

2 k tanh k h
−

− − −

− − − +
γ =

ω ν −
, superscript * represents 

complex conjugate, and 
2

g

±
± ω

ν = , j lk k k± = ± .  

The boundary value problem governing the second-order diffraction potential D
±φ  is  

2
D 0±∇ φ =     in the fluid (z < 0)  (2.34) 

2
Dg Q

z
± ± ±∂ −ω + φ = ∂ 

   on the free surface (z = 0) (2.35) 

D 0
z

±∂φ
=

∂
    on the bottom (z = -d)  (2.36) 

(1) (1)
D I B
n n

±∂φ ∂φ
= +

∂ ∂
  on the body surface  (2.37) 

far field boundary condition (2.38) 

The sum- and difference-frequency free-surface forcing terms in equation (2.35) can be 

written as:   

( )jl lj
1Q q q
2

+ + += +      (2.39) 

( )*
jl lj

1Q q q
2

− − −= +      (2.40) 

where 

(1) 2 (1)
j j(1) 2 (1) (1)

jl I j l j l IIjl2

iq g i q
2g z z

+ +
 ∂φ ∂ φ− ω

= φ −ω + + ω ∇φ ⋅∇φ −  ∂ ∂ 
  (2.41) 
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(1) 2 (1)
j j(1)* 2 (1) (1)*

jl I j l j l IIjl2

iq g i q
2g z z

− −
 ∂φ ∂ φω

= φ −ω + + ω ∇φ ⋅∇φ −  ∂ ∂ 
  (2.42) 

The sum- and difference-frequency body-surface forcing terms in equation (2.37) can be 

written as: 

( )jl lj
1B b b
2

+ + += +      (2.43) 

( )*
jl lj

1B b b
2

− − −= +      (2.44) 

where 

( )(1) (1)
jl l j

1b n
2

+ = − ⋅ ζ ⋅∇ ∇φ     (2.45) 

( )(1)* (1)
jl l j

1b n
2

− = ⋅ ζ ⋅∇ ∇φ      (2.46) 

The radiation boundary condition equation (2.38) for second-order diffraction 

potential D
±φ  is more complicated than that of the first-order. The D

±φ needs to be 

decomposed into a homogeneous solution and a particular solution, satisfying respectively 

the homogeneous and inhomogeneous free-surface boundary conditions and jointly the 

inhomogeneous body-boundary conditions. The homogeneous potential has far-field 

behavior of a free propagating wave, and the particular potential is governed by that of the 

free surface forcing, Q± . The detailed explanations of the radiation boundary condition 

are available in Kim and Yue (1990). 

The second-order radiation, R
±φ , satisfies the boundary value problems similar to the 

first-order radiation body boundary condition in equation (2.22). As mentioned before, the 

second order radiation potential involves only the first- and second- order potentials. 

Therefore, the solutions for the R
±φ  for the second-order hydrodynamic coefficients are 
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identical to that of the first-order radiation problem at sum- and difference frequencies. 

 

2.3.3. First-Order Hydrodynamic Force and Moment 

 

The first-order forces and moments acting on a floating body as well as the free-

surface elevations can be obtained directly from first-order diffraction and radiation 

potential. The first-order total pressure can be defined as: 

(1)
(1)P gz

t
 ∂Φ

= −ρ + ∂ 
     (2.47) 

The six components of the force and moment vectors are directly obtained by 

integration of the pressure over the instantaneous wetted body surface (SB) or can be 

decomposed into three components. 

( )

0

0

0

(1) (1) (1) (1)
HS R EX

j
s

6
i t

j j j
j 1 s

i t
I D j

s

  

      g zn dS     

         Re i e n dS 

         Rei Ae n dS 

− ω

=

− ω

= + +

= −ρ

− ρ ωζ φ

− ρ ω φ + φ

∫∫

∑ ∫∫

∫∫

F F F F

 for j = 1 to 6 (2.48) 

where 1 2 3(n , n , n ) = n  and 4 5 6(n , n , n ) = ×r n . The first term on the left side of equation 

(2.58) represents hydrostatic restoring component ( )(1)
HSF , the second term represents the 

radiation component ( )(1)
RF , and the last term represents the linear wave exciting 

component ( )(1)
EXF .  

The hydrostatic restoring forces, ( )(1)
HSF , are induced by the hydrostatic pressure 
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change (and wetted surface change in the calm water) due to the motion of the body. The 

matrix of the hydrostatic and gravitational restoring coefficients can be listed as follows: 

33 wK gA= ρ      (2.49) 

34 43 w fK K gA y= = ρ     (2.50) 

35 53 w fK K gA x= = −ρ     (2.51) 

( )44 22 b bK g S z mgz= ρ + ∀ −    (2.52) 

45 54 12K K gS= − ρ     (2.53) 

46 b gK g x mgx= −ρ ∀ +     (2.54) 

( )55 11 b bK g S z mgz= ρ + ∀ −    (2.55) 

56 b gK g y mgy= −ρ ∀ +     (2.56) 

where ∀ is the mean body wetted volume, Aw is the water plane area, xf, and yf are the 

locations of the center of the flotation in the horizontal plane, xg, yg, and zg the location of 

the canter of the gravity, and xb, yb, and zb are the location of the canter of the gravity, and  

B

2
11

S

S x dS= ∫∫      (2.57) 

B

2
22

S

S y dS= ∫∫      (2.58) 

B

2
33

S

S z dS= ∫∫      (2.59) 

The matrix form of hydrostatic coefficients with respect to water plane area can be shown 

as follows 
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w w
ij

T

w L

0 0 0 0 0 0
0 0 0 0 0 0

0 0 gA 0 gA FG 0
K

0 0 0 g GM 0 0

0 0 gA FG 0 g GM 0
0 0 0 0 0 0

 
 
 
 ρ ρ
 =
 ρ ∀
 

ρ ρ ∀ 
  

  (2.60) 

where  

FG   = horizontal distance between center of gravity and center of flotation  

∀    = displaced volume (in calm water)       

TGM = metacentric height in the transverse direction (in calm water)   

LGM = metacentric height in the longitudinal direction (in calm water)   

Therefore, hydrostatic forces can be written as: 

[ ]{ }(1) (1)
HSF = − K ζ     (2.61) 

The radiation component, ( )(1)
RF , in equation (2.48) comes from the first-order motion of 

the rigid body. Therefore, this term corresponds to the added mass and damping coefficient 

of the rigid body. The six components of the radiation forces and moments can be written 

in the matrix form as 

[ ]{ }( )R

(1) (1)F Re= f ζ     (2.62) 

where 

B

i
ij j

S

f dS
n

∂φ
= −ρ φ

∂∫∫     (2.63) 

The coefficients ijf  are complex as a result of the free surface condition, and the real and 

imaginary parts depend on the frequency ω. Therefore, the coefficients take the form  



 

 

30

2 a
ij ij ijf M i C= −ω − ω     (2.64) 

Therefore, the equation (2.62) can be re-written as  

{ } [ ]{ }( )R

(1) a (1) (1)F Re  = ζ + M C ζ   (2.65) 

where, aM  represents the added mass coefficient matrix, and C  as the potential 

damping coefficients.  

The last term in the right hand side of the equation (2.48) is related to the linear wave 

exciting forces and moments that are proportional to the incident wave amplitude.  

( )
EX

0

j(1) i t
I D

S

F Re Ae dS
n

− ω
 ∂φ = −ρ φ + φ ∂  

∫∫   (2.66) 

The exciting force from a unit amplitude incident wave is called as linear force 

transfer functions (LTF). LTF defines the relation between the wave elevation and the first-

order diffraction forces on the body. The first-order motions follow from the equation of 

motions and in the absence of external forces it can be expressed as  

( )
[ ]{ } [ ]{ } { } [ ]{ }( )

2
(1) (1) (1) (1) (1)

G HS R EX2t
                    

∂
+ × = + +

∂

  
(1) (1) a (1) (1)

EX

M Ξ α r F F F

M ζ = - K ζ - M ζ + C ζ + F
  (2.67) 

where M  is 6 6×  body mass matrix that can be defined as  

G G

G G

G G
ij

G G 11 12 13

G G 21 22 23

G G 31 32 33

m 0 0 0 mz my
0 m 0 mz 0 mx
0 0 m my mx 0

M
0 mz my I I I

mz 0 mx I I I
my mx 0 I I I

− 
 − 
 −

=  − 
 −
 
−  

  (2.68) 

where m is the body mass and Iij is the moment of inertia defined as  
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B

B
V

m dV= ρ∫∫∫      (2.69) 

B

ij B ij i j
V

I x x x x d = ρ ⋅ δ − ⋅ ∀ ∫∫∫    (2.70) 

where ∀  denotes the body volume and ijδ  is the Kronecker delta function.  

 

2.3.4. Second-Order Hydrodynamic Force and Moment 

 

The second-order forces and moments acting on the floating body can be obtained 

directly from second-order diffraction and radiation potential. The second-order total 

pressure can be obtained as: 

( )
(2) 2(2) (1)1P
t 2

∂Φ
= −ρ − ρ ∇Φ

∂
    (2.71) 

In the presence of bichromatic waves, equation (2.81) can be re-written as: 

jl l jl

(2) i t * i t
j l jP Re A A p e A A p e

+ −+ − ω − − ω = +     (2.72) 

where jlp±  is defined as the sum and difference frequency quadratic transfer functions for 

the pressure. The complete second-order pressure generally includes two separate 

contributions: (1) the quadratic products of the first order potentials (pq), and (2) the 

second order potential itself (pp). These two components can be expressed as 

jl qjl pjlp p p± ± ±= +       (2.73) 

(1) (1)
qjl 0 j l j l

1p A A
4

+  = − ρ ∇φ ⋅∇φ  
    (2.74) 

l

(1) (1)* *
qjl 0 j l j

1p A A
4

−  = − ρ ∇φ ⋅∇φ  
    (2.75) 

( )*
pjl 0 j l j l

1p i A A ,A A
2

± ± ±= ρ ω φ     (2.76) 
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From the hydrodynamic pressure, the second-order wave forces and moments on a body 

can be obtained by direct integration of the hydrodynamic pressure over the instantaneous 

wetted body surface, SB. The second-order forces and moments can be divided into four 

different components: 

(2) (2) (2) (2) (2)
HS R P q+  = + +F F F F F     (2.77) 

where (2)
q  F represents the contribution from the quadratic product of first-order, (2)

PF  is 

the second-order potential, (2)
RF  is the second-order radiation potential, and the second-

order hydrostatic coefficient (2)
HSF . The each second-order force and moment can be written 

as: 

B

(2)
p

S

dS
t

∂Φ
= −ρ

∂∫∫F n       (2.78) 

( ) ( ) ( )

( )

( )

B

2(2) (1) (1) (1) (1)
p

S

(1) (1) (1) (1) (1) (1)
r 3 1 2

WL

(1) (1) (1)
w 2 f 1 f 2

1 dS
2 t

1         g y x dl
2

        gA x y

∂ = −ρ ∇Φ + × ∇Φ ∂ 

 + ρ η − ξ + α − α + × 

 − ρ α α − α 

∫∫

∫

F Ξ +α r n

N α F

k

  (2.79) 

where 
1
22

3(1 n )= −N n , k is the unit vector in the z-direction, and (1)
rη is the relative wave 

height. The second order force from radiation and hydrostatics are similar to that of the 

first-order force. The wave damping and added mass at the sum- and difference-frequency 

can be obtained from first-order solutions, and the hydrostatic restoring coefficients are 

identical to that of the first-order. In the presence of bichromatic waves, the second-order 

wave exciting forces can be defined as 

EX

2 2
(2) i t * i t

j l jjl l jl
j 1 l 1

Re A A f e A A f e
+ −+ − ω − − ω

= =

 = +  ∑∑F   (2.80) 
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jl qjl pjlf f f± ± ±= +       (2.81) 

where jlf ±  is defined as the complete sum- and difference-frequency exciting force 

quadratic transfer functions (QTF). For fixed bodies, the QTF can be written as: 

( )
B

j l(1) (1) (1) (1)
qjl j l j l j l

S WL

f ndS Ndl A A
4 4

+
 ρω ωρ

= − ∇φ ⋅∇φ − φ ⋅φ 
  

∫∫ ∫  (2.82) 

( )
B

j l(1) (1)* (1) (1)* *
qjl j l j l j l

S WL

f ndS Ndl A A
4 4

−
 ρω ωρ

= − ∇φ ⋅∇φ − φ ⋅φ 
  

∫∫ ∫  (2.83) 

( ) ( )
B

*
pjl I D j l j l

S

f i ndS A A ,A A± ± ± ±
 

= ρ ω φ + φ 
  

∫∫    (2.84) 

 

2.3.5. Time Domain Expression for Wave Loads 

 

In the previous section, the wave forces from potential theory were discussed. From 

previous section, the linear wave forces are calculated at the specified wave frequency, and 

the second order sum and difference frequency force are obtained from the interactions of 

the bichromatic waves. However, in the real ocean, the waves are random or irregular. In 

this section, the extension of monochromatic and bichromatic waves to the time domain 

random wave is discussed. The linear and second-order hydrodynamic forces on the body 

due to stationary Gaussian random seas can in general be expressed as a two-term Volterra 

series in time domain:  

(1) (2)
1 2 1 2 1 2 1 2F (t) F (t) h ( ) (t )d h ( ) (t ) (t )d d

∞ ∞ ∞

−∞ −∞ −∞
+ = τ η −τ τ + τ τ η −τ η − τ τ τ∫ ∫ ∫  (2.85) 

where 1h ( )τ  and 2 1 2h ( )τ τ  are the linear and quadratic impulse response functions 
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respectively. Recall that the wave elevations can be expressed as a sum of frequency 

components, and the equation (2.85) can be rewritten in the equivalent form in linear and 

bi-frequency domain. For unidirectional wave exciting forces with N wave components it 

can be expressed as: 

j
N

i t(1)
I j j

j 1
F (t) Re A L( )e ω

=

 
= ω 

 
∑     (2.86) 

j l j l
N N N N

i( )t i( ) t(2) *
I j l j l j l j l

j 1 l 1 j 1 l 1
F (t) Re A A D( )e A A S( )eω −ω ω +ω

= = = =

 
= ω − ω + ω + ω 

 
∑∑ ∑∑  (2.87) 

where * represents complex conjugate of the quantities. jL( )ω  is linear force transfer 

functions (LTF), j lD( )ω − ω  and j lS( )ω + ω  are difference- and sum-frequency forces 

quadratic transfer function (QTF) respectively. The first- and second-order force from 

radiation potential can be written as equation (2.88) in time domain: 

t

RF m( ) R(t ) d
−∞

= − ∞ ζ − − τ ζ τ∫    (2.88) 

where the convolution integral represents the memory effects of the wave force on the 

platform from the waves generated by platform motion prior to time t. R(t) is called the 

retardation function and is related to the frequency domain solution of the radiation. The 

formulation for R(t) is shown as: 

( )
0

2 sin tR(t) C d
∞ ω

= ω ω
π ω∫    (2.89) 

where ( )C ω  is the wave damping coefficients at frequency ω  which is defined in 

equation (2.65). The term, m( )∞  in the equation (2.88) is the added mass of the body at 

the infinite frequency. The formulation for infinite added mass coefficients can be written 

as: 
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a

0
m( ) m ( ) R(t)cos tdt

∞
∞ = ω − ω∫    (2.90) 

where am ( )∞  is the added mass at frequency ω . From previous derivations, the total 

wave force can be obtained by the summation of incident wave force, added mass, and 

radiation damping force  

RT I CF F F F= + +     (2.91) 

where (1) (2)
TF F F= +  is the total wave exciting force, (1) (2)

I I IF F F= + is the summation of 

the equation (2.86) and (2.87), CF  and RF  are from equation second term and first term 

in the equation (2.88), respectively. The following formulations represent the energy 

spectra of the linear wave force, difference- and sum-frequency wave forces. These energy 

spectra can be obtained from equation (2.86) and (2.87) using by Fourier transform  

( ) ( ) ( ) 2(1)
FS S Lηω = ω ω       (2.92) 

( ) ( )
2

(2)
F 0

S 8 D , S ( )S ( )d
∞−

η ηω = µ ω − µ µ ω − µ µ∫    (2.93) 

( )
2

/ 2(2)
F 0

S 8 S , S S d
2 2 2 2

ω−
η η

ω ω ω ω     ω = + µ − µ + µ − µ µ     
     ∫  (2.94) 

where S ( )η ω  is wave spectrum, ( )(1)
FS ω  is linear wave spectrum, (2)

FS ( )− ω  and 

(2)
FS ( )+ ω is the second-order sum- and difference-frequency wave force spectrum, 

respectively.  

 

2.3.6. Morison’s Equation and Lift Force on a Column Based Body 

 

Viscous flow phenomena are of importance in several related wave and current loads 
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on offshore structures. For slender cylindrical members of a floating platform, where the 

diameter of the member is small compared to the wave length, the diffraction effect is 

usually negligible and the viscous effect becomes significant. For those members, the 

Morison’s equation is commonly used for evaluating the wave load as well as current loads. 

Morison et al. (1950) proposed an equation for a fixed cylindrical body. However, 

Morison’s equation can be modified in the case of floating cylindrical structure as follow:   
2 2

n m n a n d n n n n
D D 1F C u C x C (u x ) u x
4 4 2

π π
= ρ − ρ + ρ − −   (2.95) 

where nF  represents Morison’s force, m aC ( 1 C )= +  represents inertia coefficient, aC  

represents added mass coefficient, and dC represents the drag coefficient. nu  and nu  

are the fluid acceleration and velocity normal to the body, and nx  and nx  are normal 

acceleration and velocity of the structure. Equation (2.95) shows that the total force, nF , is 

composed of inertia and viscous force terms. The first two terms on the right hand side of 

equation (2.95) show the inertia force including the Froude-Krylov force and added mass 

force. The last term in equation (2.95) represents the drag force in the relative velocity 

form. This relative-velocity form indicates that the drag force contributes to both the 

exciting force and damping force on the body. Another important viscous effect on the 

offshore floating structure is vortex-induced vibration. When a column based floating 

structure (i.e. classical spar) is exposed to strong current (i.e. Loop Currents). The pressure 

difference around a bluff body in current may cause flow separation. Due to the velocity 

difference between the outermost boundary layers and innermost boundary layer and if the 

velocity of flow is large enough, this causes the boundary layers to roll into the rear wake 

and form periodic vortices. The interaction of the structure with these vortices causes the 

structure to vibrate transverse to the flow direction, and this phenomenon is called as 
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vortex-induced vibration. The frequency of vortex shedding can be found by the Strouhal 

number that is function of Reynolds number and body geometry. In the numerical 

simulation called WINPOST, the currents are modeled as steady and unidirectional. In this 

case, the vortex-induced vibration can be modeled as a simple harmonic excitation force in 

the drag and lift direction, (Faltinsen, 1990). Based on unidirectional and steady current 

assumption, vortex-induced vibration can be approximated as follows: 

2
L L v

1F (t) C U Dcos(2 f t )
2 ∞= ρ π + α    (2.96) 

where LF  is lift force on the structure, LC  is lift coefficient, U∞  is incident steady 

current velocity from far upstream, vf  is Strouhal frequency, and α  is phase angle. In 

this study, the diameter of the classical spar platform hull is comparable to the wave length 

and thus diffraction theory is used to predict the wave force on the spar hull. However, 

when the viscous effect can not be neglected (as in the case of current and damping for the 

drag force in slow drift motion, and additional excitation force from vortex-induced 

vibration from strong current), the drag force term in Morison’s equation and lift force are 

combined with the potential theory to determines the wave and current forces on the 

column based platforms.  

 

2.4. Time Domain Solution of the Platform 

 

From conservation of momentum in the Newton’s second law, the equilibrium of the 

inertia force and external force can be expressed as: 
2

G
2

d x
dt

=m f      (2.97) 
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d ( )
dt
ϕ

+ ϕ× ϕ =I I mo     (2.98) 

where m  represents the body mass of floating platform, Gx  represents body fixed 

coordinate with respect to the center of gravity of the floating structure, f  represents 

external force in equation (2.97). I  represents moment of inertia, ϕ  represents angular 

velocity, mo  represents external moments in equation (2.98). The bold letters represent 

matrix and vector. In angular momentum equation (2.98), the second term in the left hand 

side is nonlinear, and the relation between the angular velocity and the Eular angles which 

define the body rotation are also nonlinear. These nonlinearities introduce complexity in 

solving the motion equations, especially in the frequency domain. If the rotation angle is 

assumed to be small, then equations (2.97) and (2.98) can be written as linear equations: 

(t)=Mζ F      (2.99) 

where M  represents 6 × 6 body mass matrix which shown in equation (2.78), ζ  

represents body acceleration, and (t)F  represents the external force and moment vector. 

In the time domain, equation (2.99) can be expressed as follows: 

N( ) (t) (t, ) (t, ) + ∞ + = + ζ + ζ 
a

I CM M ζ Kζ F F F    (2.100) 

where ( )∞aM  is added mass as shown in equation (2.90), (t)IF is first- and second-order 

wave exciting force on the platform, and (t, )ζCF  represents radiation damping force as 

follows: 

t
(t, ) R(t ) d

−∞
= − τ τ∫CF ζ ζ     (2.101) 

The last term in right hand side of the equation (2.100), N (t, )ζF , represents an additional 

force from the Morison equation (and lift force for column based floating structure). There 
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are many numerical integration methods developed to solve the second-order differential 

equations. In this study, the Adams-Moulton method, which has a second-order accuracy, is 

used. To solve the equation (2.100) with Adams-Moulton method, equation (2.100) is first 

changed to two first order differential equations:  

N(t) (t, ) (t, )= + ζ + ζ −I CMξ F F F Kζ    (2.102) 

=ζ ξ        (2.103) 

where ( )∞= + ∞M M M . In the second step, performs time integration for equation 

(2.102) and (2.103) in t(n) to t(n+1) interval, then obtain following equations.  

( )
t (n 1) t (n 1)(n 1) (n)

Nt(n) t(n)
dt dt

+ ++ = + + + + −∫ ∫I CMξ Mξ F F F Kζ   (2.104) 

t(n 1)(n 1) (n)

t (n)
dt

++ = + ∫ζ ζ ξ       (2.105) 

In the third step, applying the Adams–Moulton scheme 
t(n 1) (n) (n 1)

t (n)

txdt x x
2

+ +∆  = +   ∫ , 

and rearranging the equations make the equation (2.104) and (2.105) yields the following 

linear algebraic equation with unknown quantities (n 1)+ξ  and (n 1)+ζ : 

( )

( )

(n 1) (n) (n 1) (n) (n 1) (n) (n 1) (n)
I I C C N N

(n 1) (n)

t
2

t               
2

+ + + +

+

∆
= + + + + + +

∆
− +

Mξ Mξ F F F F F F

K ζ ζ
 (2.106) 

( )(n 1) (n 1) (n) (n)2
t

+ += − −
∆

ξ ζ ζ ξ      (2.107) 

However, due to convolution integral and drag force are functions of the unknown 

platform velocity at (n+1) time step. To avoid an iterative process to compute (n 1)
C

+F  and 

(n 1)
n

+F , the Adams-Bashforth scheme is used. The following equations show the Adams-

Bashforth scheme for the nonlinear terms: 
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( )t (n 1) (n) (n 1)
C C Ct(n)

tdt 3
2

+ −∆
= −∫ F F F  and (0)

Ct= ∆ F  for n 0=   (2.108) 

( )t (n 1) (n) (n 1)
N N Nt(n)

tdt 3
2

+ −∆
= −∫ F F F  and (0)

Nt= ∆ F  for n 0=   (2.109) 

From the above procedure, the final form of the integration equation can be obtained by 

combining the equation (2.106), (2.107), (2.108), and (2.109).  

( ) ( ) ( )(n) (n 1) (n) (n) (n 1) (n) (n 1)
I I C C N N2 2

(n)
0

4 4 3 3
t t

                     2 2

+ − − + = + + + + + + ∆ ∆ 
− +

M K Mξ F F F F F F

Kζ F
 (2.110) 

where  

(n 1) (n)+∆ = −ζ ζ ζ      (2.111) 

and 0F  represents the net buoyancy force on the platform for balancing the system. From 

equation (2.110), ∆ζ  can be obtained, then (n 1)+ξ  and (n 1)+ζ  are obtained from (2.107) 

and (2.111), and these values are used in the right hand side of the equation (2.110) for the 

next time step. To avoid numerical instability in the Adams-Bashforth scheme, the smaller 

time interval ( t∆ ) is needed. However, due to the strong nonlinearity in the mooring line, 

much smaller time interval is required to solve the equation when the mooring lines and 

risers are included. Therefore, the time interval for simulation is governed by the mooring 

analysis, which is small enough for platform dynamic analysis. 

 

2.5. Mathieu Instability of the Spar Platform 

 

2.5.1. Mathieu Equation 

 

The Mathieu equation is a special case of Hill’s equation. Hill’s equation is a linear 

equation with a periodic coefficient. The standard form for Hill’s equation is as follows: 
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x ( p(t))x 0+ α + =     (2.112) 

When p(t) is periodic, then it is known as Hill’s equation. For the special case 

p(t) cos t= β , 

x ( cos t)x 0+ α + β =    (2.113) 

it is referred to the undamped Mathieu’s equation. A general damped Mathieu’s equation is 

shown as follows: 

x cx ( cos t)x 0+ + α + β =    (2.114) 

This kind of nonlinear ordinary equation cannot be solved explicitly. However, by fixing 

the damping coefficient, zeros of infinite determinants can be found by specifying α (or β) 

and searching for the corresponding β (or α) that gives a set of results sufficiently close to 

zero. Two methods are available to find the parameter values for parametric plane. The 

first is using the perturbation method and the second is using Hill’s infinite determinants 

method. Using Hill’s infinite determinants, the parametric curves can be obtained by the 

complex Fourier series. The first periodic solution of period 2π is as follow: 

int
n

n
x(t) s e

∞

=−∞

= ∑      (2.115) 

After substituting equation (2.115) into the damped Mathieu’s equation, equation (2.113), 

the solution for all t is: 

int 2
n 1 n n 1

n

1 1e s ( inc n )s s 0
2 2

∞

+ −
=−∞

 β + α + − + β = 
 

∑   (2.116) 

This can be satisfied only if the coefficients are all zero: 

2
n 1 n n 1

1 1s ( inc n )s s 0
2 2+ −β + α + − + β = , n 0, 1, 2,....= ± ±  (2.117) 

This infinite set of homogeneous equations for { }ns  has non-zero solutions if the infinite 

determinant formed by the coefficients is zero, when 2n≠α  for any n. The infinite 
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determinant is formed as: 

1 1

0 0

1 1

. . . . . . .

. 1 0 0 .
0. 0 1 0 .

. 0 0 1 .

. . . . . . .

γ γ
=γ γ

γ γ
   (2.118) 

where 

2
n / 2( inc n ),    n 0,1,2,....γ = β α + − =   (2.119) 

To find the second periodic solution of period π4  is as followed 
1 int
2

n
n

x(t) s e
∞

=−∞

= ∑      (2.120) 

After substituting equation (2.115) into damped Mathieu’s equation, equation (2.114), the 

solution for all t is represented as: 

int 2
n 2 n n 2

n

1 1 1 1e s ( inc n )s s 0
2 2 4 2

∞

+ −
=−∞

 β + α + − + β = 
 

∑   (2.121) 

This can be satisfied only if the coefficients are all zero: 

2
n 2 n n 2

1 1 1 1s ( inc n )s s 0
2 2 4 2+ −β + α + − + β = , n 0, 1, 2,....= ± ±  (2.122) 

This infinite set of homogeneous equations for { }ns  has non-zero solutions if the infinite 

determinant formed by the coefficients is zero; when 2n≠α  for any n. The infinite 

determinant is formed as: 

2 2

1 1

1 1

2 2

. . . . . . . .

. 1 0 0 0 .

. 0 1 0 0 .
0

. 0 0 1 0 .

. 0 0 0 1 .

. . . . . . . .

γ γ
γ γ

=
γ γ

γ γ

   (2.123) 

where 
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2
2n 1

1 1/ 2( i(2n 1)c (2n 1) ),     n 0,1,2,....
2 4+γ = β α + + − + =  (2.124) 

The parametric plane generated by Hill’s infinite determinant method is shown in Fig. 

2.1. The Fig. 2.1 shows that the second unstable region is more influenced by the damping 

effect than the principal unstable region, and the damped Mathieu diagram also shows that 

when the damping is added to the system, the unstable regions separate from the α - axis. 

This means that the unstable region is reduced when damping is added to the system. 

However, when the principal unstable region is less influenced by damping, the principal 

unstable region should be examined carefully.  
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Fig. 2.1. Stability diagram for damped Mathieu’s equation. 
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2.5.2. Heave/Pitch Coupled Equation for Classical Spar Platform 

 

For a spar, the pitch restoring stiffness 55K is a function of displaced volume and 

Metacentric height GM , represented by g GMρ ∀  in still water. When the spar has heave 

motion and the heave amplitude is assumed as 3ζ , then the metacentric height and 

displaced volume are changed with heave motion. The metacentric height and displaced 

volume can be obtained by following equation: 

new 3
1GM GM (t)
2

= − ζ     (2.125) 

new w 3A (t)∀ = ∀ − ζ      (2.126) 

where Aw is the spar water plane area. Based on a new metacentric height and displaced 

volume, the new pitch restoring stiffness, 55newK , can be calculated as follow: 

( ) 2
new55new new 55 w 3 w 3

1 1K g GM K g 2A GM gA
2 2

= ρ ∀ = − ρ ∀ + ζ + ρ ζ  (2.127) 

Equation (2.127) clearly shows heave/pitch coupling and also shows time dependence of 

pitch stiffness. For simplicity, the heave motion is assumed as a one-term harmonic, 

3 3(t) cos tζ = ζ ω , where ω  is heave motion frequency. Thus, the pitch motion can be 

written as: 

55 55 5 55 5 3 5
1(I A ) (t) C (t) g (GM cos t) (t) 0
2

+ ζ + ζ + ρ ∀ − ζ ω ζ =   (2.128) 

where 55I  and 55A  are the pitch moment of inertia and the added pitch moment of 

inertia. 5ζ  and 3ζ  are pitch and heave motion respectively. Based on the new pitch 

equation of motion the parameter in the Mathieu’s equation can be defined as follows: 
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2
5

2 2
55 55

g GM
(I A )

ωρ ∀
α = =

+ ω ω
    (2.129) 

3
2

55 55

0.5 g
(I A )

ρ ∀ζ
β =

+ ω
     (2.130) 

55

55 55

Cc
(I A )

=
+ ω

     (2.131) 

where, 5ω  is pitch natural frequency. However, in the time domain platform motion, 

equation (2.127) is used for 44newK  and 55newK  in Mathieu’s instability investigation. 

The resultant formulation for pitch equation of motion in the time domain simulation can 

be expressed as: 

55 55 5 55 5 new 3 5
1(I A ) (t) C (t) g (GM (t)) (t) 0
2

+ ζ + ζ + ρ ∀ − ζ ζ =  (2.132) 
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CHAPTER III 

 

3. DYNAMICS OF MOORING LINES AND RISERS 

 

3.1. Introduction 

 

In the previous Chapter II, the hydrodynamic loads and motions of a floating platform 

are reviewed. In this chapter, the theoretical and numerical formulations of the static and 

dynamic analysis of mooring lines and risers are discussed.  

The function of the mooring system is to keep the floating platform in the position 

over the reservoir. For station keeping purposes, there are two kinds of mooring systems, 

which are single-leg and multi-leg mooring systems. The most common concept in 

deepwater oil field is a multi-leg mooring system, which is more reliable compared to the 

single point mooring system. The multi-leg mooring systems can be categorized by there 

shape as: catenary system, semi-taut, taut system, and vertical tension tendons. The 

catenary and taut mooring systems generally use chain-wire-chain or chain-polyester-chain 

mooring combination. The semisubmersible, spar platform, and tanker based FPSO 

generally use these two kinds of mooring system for their station keeping. Due to the large 

footprint of the catenary spread mooring line, semi-taut or taut mooring lines are more 

common in the very deep water oil field. Vertical tension leg tendons that are generally 

made of steel pipes, have been used in Tension Leg Platform (TLP) to improve the heave, 

pitch and roll responses. Due to weight of tendons and installation costs, the TLP concept 

generally is considered to have a depth limitation (beyond 1300 meter). 
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To import and export oil and gas in the offshore field, risers are another important sub 

system of the floating platform. There are two kinds of riser systems commonly used in the 

offshore field. The first one is the steel vertical riser system which is used for a classical 

spar or truss spar platform. The advantage of a steel vertical riser is that a dry tree system 

can be used which does not need sub-sea operation. The other one is flexible riser, which 

can be arranged in catenary shapes. The advantage of the flexible riser system is that it is 

able to operate with much larger platform motion compared with steel vertical riser system. 

Although the main functions of the riser system are to transport oil and gas as well as 

drilling, the riser system also gives additional contribution to the station keeping 

performance of the offshore platform. For example, the vertical riser system in classical 

spar platform reduces heave and pitch responses, and the steel catenary riser reduces the 

translational motion of the floating platform.  

In the theoretical and numerical view, both the mooring line and riser can be treated as 

slender rods or cables. Therefore, the analysis of the mooring lines and risers has been 

developed based on the slender rod theory. Due to large displacement and small strain, the 

geometric nonlinearity is dominant in mooring lines and risers. To consider the 

hydrodynamic force on the line as well as the strain and stress with geometric nonlinearity 

of the line, the beam theory combined with updated Lagrangian methods are used in this 

study, which is derived by Nordgen (1974) and Garret (1982). In this study, three-

dimensional elastic rod theory, which is extended to include line stretching, are chosen to 

model the mooring lines and risers. The advantage of the slender rod theory is that the 

governing equation is developed in a single global coordinate system. In the numerical 

modeling scheme, the static and dynamic behavior (characteristics) of the lines are 
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modeled as a weak formulation based on the Galerkin methods in order to apply the Finite 

Element Method. Most of derivation and numerical schemes were developed by Ran 

(2000), and therefore, the derivation and the notation in this study follow Ran (2000). 

 

3.2. Slender Rod Theory 

 

In the slender rod theory, the deformed state of the rod can be expressed in terms of 

the position of the center line of the rod in the space curve (s, t)r , as illustrated in Fig. 3.1.  
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r(s,t)
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M

 

Fig. 3.1. Coordinate system for slender rod. 
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The space curve is defined by the position vector r  that is a function of the arc-

length s (measured along the curve) and time t. If the rod is assumed as inextensible, which 

means the arc length s is not changed after deformation. The unit tangent vector to the 

space curve is ′r , and the principle normal vector is ′′r . The bi-normal is directed along 

′ ′′×r r , where the prime denotes the differential with respect to arc-length. The internal 

state of stress at a point on the rod can be described by the resultant force F  and moment 

M  acting along the center line. The equilibrium of the linear force and moment for a 

segment of rod with unit arc-length leads to the following equation of motion: 

′ + = ρF q r      (3.1) 

′ ′ ′+ × + =M r F m 0     (3.2) 

where ′F : resultant force acting along the centerline 

 ′M : resultant moment acting along the centerline 

 q : applied force per unit length 

 ρ : mass of the rod per unit length 

 m : applied moment per unit length 

For an elastic rod with equal principle stiffness, the bending moment is proportional to 

curvature and is directed along the bi-normal. Thus the resultant moment M  can be 

expressed as: 

EI H′ ′ ′′ ′= × +M r r r      (3.3) 

where EI is the bending stiffness and H is the torque. Substituting the equation (3.3) into 

equation (3.2) then: 

( )EI H H ′′ ′′ ′ ′ ′′× + + + + =  
r r F r r m 0    (3.4) 

and the scalar product of the above equation with ′r  yields: 
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H′ ′+ ⋅ =m r 0       (3.5) 

If there is no distributed torsional moment ′⋅m r , it is shown from the above equation that 

the torque H is independent of arc lengths. Due to the circular cross section of the line 

element, there is no distributed torsional motion from the hydrodynamic forces. In addition, 

the torque in the lines is usually small, and thus it can be neglected. Therefore, both H and 

m  are assumed to be zero. Thus, equation (3.5) can be rewritten as: 

( )EI ′′ ′′× + =  
r r F 0      (3.6) 

Using a scalar function (s, t)λ , equation (3.6) can be written as follows: 

( )EI ′′′ ′= − + λF r r      (3.7) 

The scalar product of equation (3.7) with ′r  results in: 

( )EI ′′ ′′ ′λ = ⋅ − ⋅F r r r      (3.8) 

or 

2T EIλ = − κ       (3.9) 

where T is the tension and κ  is the curvature of the line. Combining equation (3.7) and 

(3.1), the equation of the rod can be established:  

( ) ( )EI ′′ ′′′ ′− + λ + = ρr r q r     (3.10) 

In addition, r  must satisfy the inextensibility condition: 

1′ ′⋅ =r r        (3.11) 

If the rod is considered stretchable and the stretch is linear and small, the above 

inextensibility condition can be approximated by: 

( )1 T1
2 AE AE

λ′ ′⋅ − = ≈r r      (3.12) 

The scalar function (s, t)λ  is also called a Lagrangian multiplier since it appears as a 
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result of the assumption of the inextensibility. The dependent variables (s, t)λ  and (s, t)r  

can be determined by using equation (3.10) and (3.11) or (3.12) with initial conditions, 

boundary conditions, and applied force q . In most offshore applications, the applied force 

on the rod (mooring line, riser and tendon) comes from the hydrostatic and hydrodynamic 

force from the surrounding fluid, and the gravity force of the rod itself. Therefore, the 

external force equation can be written as: 

= + +s dq w F F       (3.13) 

where w  represents the weight of the rod per unit length, sF  is the hydrostatic force on 

the rod per unit length, and dF  is the hydrodynamic load per unit length. The hydrostatic 

force can be written as follows:  

( )P ′′= −sF B r       (3.14) 

where B  is the buoyant force of the rod per unit length (assume the cross sections are 

subjected to the hydrostatic pressure), and the P , which is scalar, is the hydrostatic 

pressure at the point r  on the rod. 

Morison’s formula is used to compute the hydrodynamic force on the rod:  

( )n n n n n n
A M D

n
A

C C C

    C

= − + + − −

= − +

d

d

F r V V r V r

r F
  (3.15) 

where AC  is the added mass coefficient (added mass per unit length), MC  is the inertia 

coefficient (inertia force per unit length per unit normal acceleration), DC  is the drag 

coefficient (drag force per unit length per unit normal velocity). nV  and nV  are fluid 

velocity and acceleration normal to the rod centerline. The normal fluid velocity and 

acceleration can be obtained form the total fluid velocity and the tangent vector of the line:  

( ) ( )n ′ ′ = − − − ⋅ V V r V r r r     (3.16) 
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( )n ′= − ⋅ ⋅V V V r r      (3.17) 

where V  and V  are the total water particle acceleration and velocity at the center line 

of the rod assuming the fluid field is undisturbed by the existence of the rod. In equation 

(3.15), nr  and nr  are the components of the rod acceleration and velocity normal to its 

centerline and can be obtained from the following equation: 

( )n ′ ′= − ⋅r r r r r      (3.18) 

( )n ′ ′= − ⋅r r r r r      (3.19) 

Combining equation (3.13), (3.14) and (3.15) with (3.10), the equation of the rod with its 

weight, hydrostatic and hydrodynamic forces in water becomes:    

( ) ( ) dn
a wC EI ′′′′′ ′ρ + ρ + − λ = +r r r r w F    (3.20) 

where 

2 2T P EI T EIλ = + − κ = − κ     (3.21) 

= +w w B        (3.22) 

T T P= +        (3.23) 

and w  and T  represent effective weight and effective tension respectively. Finally 

equation (3.20) with equation (3.11) or (3.12), the static or dynamic governing equation of 

the slender rod in water is established.  

 

3.3. Finite Element Model 

 

Since the governing equation is nonlinear, it is difficult to solve the equation by 

analytically. Therefore, the finite element method is used to transform the differential 
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equations into a series of algebraic equations through an integral statement. For 

convenience, the governing equations (3.20) and (3.12) are written in subscript notation: 

( ) ( )n d
i a w i i i i ir C r EIr r w F 0′′′′′ ′−ρ − ρ − + λ + + =    (3.24) 

and  

( )r r
1 r r 1 0
2 AE

λ′ ′⋅ − − =       (3.25) 

where the subscripts range from 1 to 2 for the 2 dimensional problem and from 1 to 3 for 

the 3 dimensional problem. Repeating of the subscripts in the same equation means 

summation over the subscripts’ range.  

In the finite element method, the line is discretized into elements with finite length 

and the algebraic equations are developed in the element level. The unknown variable 

ir (s, t) , (s, t)λ  can be approximated as:  

i l ilr (s, t) A (s)U (t)=     (3.26) 

m m(s, t) P (s) (t)λ = λ     (3.27) 

where, 0 s L≤ ≤ , lA (s)  and mP (s)  are interpolation functions, and ilU (t)  and m (t)λ  

are the unknown coefficients. By introducing shape functions for the solution, the weak 

formulations for applying the finite element method technique are written by multiplying 

the weight function:  

( ) ( )L n d
i i a w i i i i i0

r r C r EIr r w F ds 0 ′′′′′ ′δ −ρ − ρ − + λ + + =  ∫   (3.28) 

( )
L

r r0

1 r r 1 ds 0
2 AE

λ ′ ′δλ ⋅ − − =  ∫      (3.29) 

The following cubic shape functions for lA (s)  and quadratic shape function for mP (s)  

are used for the basis of the relation of i l ilr A U (t)δ = δ  and m mPδλ = λδ  such as equation 

(3.28) and (3.29): 
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( )

( )

2 3
1

2 3
2

2 3
3

2 3
4

A 1 3 2

A L 2

A 3 2

A L

= − ξ + ξ

= ξ − ξ + ξ

= ξ − ξ

= −ξ + ξ

     (3.30) 

( )
( )

2 3
1

2

3

P 1 3 2
P 4 1

P 2 1

= − ξ + ξ

= ξ − ξ

= ξ ξ −

     (3.31) 

where s
L

ξ =  

i1 i i2 i

i3 i i4 i

U r (0, t),      U r (0, t)

U r (L, t),      U r (L, t)

′= =

′= =
    (3.32) 

1 2 3
L(0, t),     ( , t),     (L, t)
2

λ = λ λ = λ λ = λ   (3.33) 

Thus, the equation (3.30) and (3.31) can be written as follows: 

( ) ( )L Ln n
i i a w i i a w i l il0 0

r r C r ds r C r A U dsδ ρ − ρ = ρ − ρ δ∫ ∫    (3.34) 

( ) ( )

( )

L L

i i i l il0 0

L LL
i l i l l i il0 00

r EIr ds EIr A U ds

                      EIr A EIr A EIA r ds U

′′ ′′′′ ′′δ = δ

 ′′′ ′′ ′ ′′ ′′= − + δ 
 

∫ ∫

∫
  (3.35) 

( ) ( )
( )

L L

i i i l il0 0

L L

i l i l il00

r r ds r A U ds

                      r A r A ds U

′ ′′ ′δ λ = λ δ

 ′ ′ ′= λ + λ δ 
 

∫ ∫

∫
   (3.36) 

( )L Ld d
i i i i i l il0 0

r w F ds w F A ds U  δ + = + δ    ∫ ∫    (3.37) 

( ) ( )
L L

r r m r r m0 0

1 1r r 1 ds P r r 1 ds
2 AE 2 AE

λ λ   ′ ′ ′ ′δλ ⋅ − − = ⋅ − − δλ      ∫ ∫  (3.38) 

If equations (3.34) to (3.37) are assembled and the term of ilUδ  is canceled out on both 

sides of the above equations, the following equation is obtained:  
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( ) ( ){ }
( )

L n d
l i a w i l i l l i i0

L
L

i l i i l0
0

A r C r EIA r r A A w F ds

                                 EIr A r EIr A

′′′ ′′ ′ρ − ρ + + λ − +

 ′′′′ ′ ′′= + λ +  

∫
  (3.39) 

The same procedures are applied for equation (3.38) and mδλ  is removed from both side 

of the equation (3.38), and the final form of the equation (3.38) is:  

( )
L

m r r0

1P r r 1 ds 0
2 AE

λ ′ ′⋅ − − =  ∫      (3.40) 

Thus, the unknown quantities that need to be determined are the position vector and 

tangent vectors at the two end nodes of the elements and the scalar λ . The λ  represents 

the line tension at the end nodes and the midpoint. By combining equations (3.19), (3.26) 

and (3.27) with (3.39) The equation of motion for the element can be written as follows:  

( ) ( )a 1 2
ijlk ijlk jk ijlk n nijlk jk ilM M U K K U F 0+ + + λ − =    (3.41) 

where 

L L

ijlk jk l i l k ij jk0 0
M U A rds A A dsU= ρ = ρ δ∫ ∫     (3.42) 

( )
( )

La n
ijlk jk l A i0

L L

A l k ij l k s t it js ij jk0 0

M U A C r ds

            C A A ds A A A A U U ds U

=

 ′ ′= δ − δ  

∫

∫ ∫
 (3.43) 

L L1
ijlk jk l i l k ij jk0 0

K U EIA r ds EIA A dsU′′ ′′ ′′ ′′= = δ∫ ∫     (3.44) 

L L2
ijlk jk l i n n l k ij jk0 0

K U A r ds P A A dsU′ ′ ′= λ = λ δ∫ ∫    (3.45) 

( )L d
il i i l0

F w F A ds= +∫       (3.46) 

and ijδ  is the Kronecker Delta function. The resultant forces and moments are not 

included in this equation, since these forces and moments canceled with the neighboring 

element during the assembly of the element equation to satisfy the compatibility between 
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two elements. ijlkM  in equation (3.42) represents the mass term and a
ijlkM  in equation 

(3.43) represents the added mass. In equation (3.44) and (3.45), there are two stiffness 

terms. 1
ijlkK  is the material stiffness that comes from the bending stiffness EI, and 2

nijlkK  

is the stiffness from tension and the curvature of the rod. For the two dimensional problem, 

i, j = 1, 2 and for the three dimensional problem, i, j = 1, 2, 3 and the subscript l, k, s, t = 1, 

2, 3, 4. The equation (3.40) can be written as:  

m mil kl ki m mn nG A U U B C 0= − − λ =     (3.47) 

where 

L L

mil jl jk m r r m l k jl jk0 0

1 1A U U P r r ds P A A dsU U
2 2

′ ′ ′ ′= =∫ ∫    (3.48) 

L

m m0

1B P ds
2

= ∫        (3.49) 

L L

mn m n m n0 0

1C P ds P P ds
AE AE
λ

= = λ∫ ∫     (3.50) 

From equations (3.41) and (3.47), each element has 12 second-order ordinary 

differential equations and 3 algebraic equations (3-dimentional problem). All these 

equations are nonlinear and the force vector, ilF , is also a nonlinear function of the 

unknowns because the wave force varies with the line position. In the next two sections, 

the numerical treatment for these nonlinear equations is discussed. 

 

3.4. Formulation of Static Problem 

 

In previous section, the equation of motion is derived and expended by finite element 

method. As mentioned in section 3.3, the numerical treatment of the nonlinear governing 

equation is discussed in this section and the next section. To analyze the dynamic problem, 



 

 

57

first the static equilibriums should be obtained. Therefore, in this section, the static 

problem is discussed. If the inertia term in equation (3.41) is removed, then the governing 

equation becomes the static equilibrium equation and it also becomes a nonlinear algebraic 

equation:   

ilR 0=       (3.51) 

mG 0=       (3.52) 

where, 

( )1 2
il ijlk n nijlk jk ilR K K U F= + λ −     (3.53) 

and ilF  is a static forcing term from the gravity force, drag force from the steady current 

and other applied static forces on the line. To solve the nonlinear equations, the Newton-

Raphson’s iterative method is used. Using the Taylor series expansion, the equation (3.51) 

and (3.52) can be expressed as follow: 

( ) ( )(n 1) (n) il il
il il jk n

jk n

R RR R U
U

+ ∂ ∂
= + ∆ + ∆λ

∂ ∂λ
   (3.54) 

( ) ( )(n 1) (n) m m
m m jk n

jk n

G GG G U
U

+ ∂ ∂
= + ∆ + ∆λ

∂ ∂λ
   (3.55) 

where  

1 2il
ijlk n nijlk

jk

R K K
U

∂
= + λ

∂
     (3.56) 

2il
nijlk

n

R K∂
=

∂λ
      (3.57) 

m
mkl jk

jk

G 2A U
U

∂
=

∂
     (3.58) 

m
mn

n

G C∂
= −

∂λ
      (3.59) 

and re-arrange the terms, 

( ) ( )1 2 2 (n)
ijlk n nijlk jk nijlk jl n ilK K U K U R+ λ ∆ + ∆λ = −   (3.60) 
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( ) ( ) (n)
mkl jl jk mn n m2A U U C G∆ + − ∆λ = −    (3.61) 

from equation (3.60) and (3.61), the equation can be expressed by matrix form as follows: 

t0(n) t1(n) (n)
ijlk i ln jk il
t0(n) t1(n) (n)
mjk mn n m

K K U R
D D G

  ∆  − 
=     ∆λ −      

   (3.62) 

where, 

t0(n) 1 (n) 2
ijlk ijlk n nijlkK K K= + λ      (3.63) 

( )Lt1(n) 2 (n) (n)
i ln nijlk jk n l k jk0

K K U P A A ds U′ ′= = ∫    (3.64) 

( )Lt0(n) (n) (n)
mjk mkp jp m k p jp0

D A U P A A ds U′ ′= = ∫    (3.65) 

Lt1(n)
mn mn m n0

1D C P P ds
AE

= − = − ∫     (3.66) 

( )(n) 1 2 (n)
il ijlk n nijlk jK ilR K K U F= + λ −     (3.67) 

(n) (n) (n) (n)
m mil kl ki m mn nG A U U B C 0= − − λ =    (3.68) 

After renumbering, the equation (3.26) can be written in the form: 

( )(n) (n)∆ =K y F       (3.69) 

where jkU  and nλ  form the vector y  

[ ]T
11 12 21 22 31 32 1 2 13 14 23 24 33 34 3U U U U U U U U U U U U= λ λ λy   (3.70) 

the force vector is as follows:  

[ ]T
11 12 21 22 31 32 1 2 13 14 23 24 33 34 3R R R R R R G G R R R R R R G= − − − − − − − − − − − − − −F  (3.71) 

and K  represents stiffness matrix  

(n 1) (n)+ = + ∆y y y     (3.72) 

In every iterative step, the stiffness and the force vector are recalculated to solve for ∆y . 
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Because one element has 15 algebraic equation, the bend width of the stiffness matrix is 15, 

and total number of equations for one rod is (N 1) 8 1+ × − , where N is number of elements 

in a rod. From right hand side of the equation (3.39), the force vector can be written as: 

( )

[ ]

( )

[ ]

( )

[ ]

( )

[ ]

( )

[ ]

( )

1 1 l
s 0

1 l s 0

2 2 l
s 0

2 2 s 0

3 3 l
s 0

3 3 s 0

r

1 1 l
s L

1 l s L

2 2 l
s L

2 2 s L

3 3 l
s

r Br A

EIr A

r Br A

EIr A

r Br A

EIr A
0

F 0

r Br A

EIr A

r Br A

EIr A

r Br A

=

=

=

=

=

=

=

=

=

=

 ′′ ′′− λ +  
′′ ′

 ′′ ′′− λ +  
′′ ′

 ′′ ′′− λ +  
′′ ′

=
 ′′ ′′λ +  

′′ ′−

 ′′ ′′λ +  
′′ ′−

 ′′ ′′λ +  
[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

1
1
1
1
1
2
1
2
1
3
1
3

2
1
2
1
2

2
2
2
2

3
2
3

L

3 l s L

N
L
N
L
N
L
0
0
N
L
N
L
N
L
0

EIr A
0

=

=

 
 
 
 
   −   

−   
   −   

−   
   −   
  − 
   
   =   
  − 
   −   
  − 
   −   
  − 
   −   
    
 
 ′′ ′ 
   

   (3.73) 

where the superscript [1] represents the first end of the element (s = 0) and [2] represents 

the second end (s = L). { }T
1 2 3N N , N , N=  represents the nodal resultant force and 

{ }T
1 2 3L L ,L ,L=  represents the nodal resultant moment ( )′= ×M M L r . Therefore, after 

solving the variables U and λ  (at iteration n+1), the resultant force at the end nodes of an 

element can be obtained from force vector rF   

r (n 1)+= −F F      (3.74) 
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3.5. Formulation for Dynamic Problem – Time Domain Integration 

 

The dynamic equation of motion (3.41), and the stretch condition (3.47) can be 

rearrange as follows:  

( )1 2
ijlk jk ijlk n nijlk jk il ilM U K K U F F= − + λ + =    (3.75) 

m mil kl ki m mn nG A U U B C 0= − − λ =    (3.76) 

where, 

a
ijlk ijlk ijlkM M M= +      (3.77) 

1 2
il il il ilF F F F= − − +      (3.78) 

1 1
il ijlk jkF K U=       (3.79) 

2 2
il n nijlk jkF K U= λ       (3.80) 

The equation (3.77) is a second order differential equation and (3.76) is algebraic 

equation with no time derivatives of the variables. To establish the time integration 

numerical scheme, equation (3.77) is split into two first order differential equations: 

ijlk jk ilM V F=       (3.81) 

jk jkU V=       (3.82) 

Integrating the above two equations from time t(n) (at nth time step) to t(n+1) (at n+1th time 

step) the equation can be written as: 

t(n 1) t (n 1)

ijlk jk ilt (n) t (n)
M V dt F dt

+ +
=∫ ∫     (3.83) 

t(n 1) t (n 1)

jk jkt (n) t (n)
U dt V dt

+ +
=∫ ∫      (3.84) 
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Because ijlkM  includes the added mass, the mass term is not constant, and it varies with 

line position, which means it is a function of time. By approximating the time varying 

ijlkM  in time interval (n 1) (n)t(t t )+∆ −  to be a constant 
1
2

(n )
ijlkM + , which is the mass at 

(n) tt
2
∆

+ , then the integration in equation (3.83) can be simplified as follows with second 

order accuracy as:  
1 1
2 2

t (n 1)(n ) (n )(n 1) (n)
ijlk jk ijlk jk ilt (n)

M V M V F dt
++ ++ + = ∫    (3.85) 

The (n 1)
jkV +  of the equation (3.84) can be obtained as follows using trapezoidal methods: 

( )(n 1) (n) (n 1) (n)
jk jk jk jk

tU U V V
2

+ +∆
= + +     (3.86) 

Re-arranging equation (3.85) and (3.86), the equation becomes: 

1 1
2 2

t (n 1)(n ) (n ) (n)
ijlk jk ijlk jk il2 2 t (n)

4 4 2M U M V F dt
t t t

++ +∆ = +
∆ ∆ ∆ ∫   (3.87) 

( )(n 1) (n)
jk jk jk

2V U V
t

+ = ∆ −
∆

     (3.88) 

where  

( )(n 1) (n 1) (n) (n 1) (n)
jk jk jk jk jk

tU U U V V
2

+ + +∆
∆ = − = +    (3.89) 

and the integral term in equation (3.85) can be written as: 

t(n 1) t (n 1) t (n 1) t (n 1)1 2
il il il ilt (n) t (n) t (n) t (n)

F dt F dt F dt F dt
+ + + +

= − − +∫ ∫ ∫ ∫   (3.90) 

For the first and second terms at the right hand side, applying trapezoidal rules, then  

( )t (n 1) 1 1(n 1) 1(n)
il il ilt (n)

1 1 (n)
ijlk jk ijlk jk

tF dt F F
2
t               K U 2K U

2

+ +∆
= +

∆  = ∆ + 

∫
   (3.91) 
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( )

1 1
2 2

1
2

t (n 1) 2 2(n 1) 2(n)
il il ilt (n)

(n 1) 2 (n 1) (n) 2 (n)
n nijlk jk n nijlk jk

(n ) (n )2 (n 1) 2 (n)
n nijlk jk n nijlk jk

(n )
n

tF dt F F
2
t               K U K U

2
t               K U K U

2
t               2

2

+ +

+ +

+ ++

+

∆
= +

∆  = λ + λ 

∆  ≈ λ + λ  
∆

= λ

∫

1
2

(n )2 (n) 2 (n) 2
nijlk jk nijlk jk n n nijlk jkK U 2K U K U− + ∆λ + λ ∆  

 (3.92) 

where 
1 1
2 2

(n ) (n )
n n n

+ −∆λ = λ − λ . The third term in equation (3.90) includes the applied force 

ilF  which is from gravity and hydrodynamic forces. The gravity force is independent of 

time, but the hydrodynamic force form Morison equation is unknown at time step (n+1) 

since the force is function of the unknown rod position and velocity. Therefore, the Adams-

Bashforth explicit scheme is used for the integration: 

( )

(0)
ilt (n 1) 2

il (n) (n 1)t (n)
il il

tF                            for step1
F dt t 3F F          for other step

2

+

−

∆
= ∆

+
∫   (3.93) 

Using the above equations, the time integration equation (3.85) can be obtained as follows: 

( )

1 1
2 2

1 1
2 2

(n ) (n )1 2 2 (n)
ijlk ijlk n nijlk jk nijlk jk n2

(n ) (n )(n) (n) (n 1) 1 (n) 2 (n)
ijlk jk il il ijlk jk n nijlk jk2

4 M K K U 2K U
t
4 M V 3F F 2K U 2 K U
t

+ −

+ +−

 + + λ ∆ + ∆λ ∆ 

= + − − − λ
∆

 (3.94) 

Using Adams-Bashforth method can approximate the time varying mass: 

( )
1
2

(n ) (n) (n 1)
ijlk ijlk ijlk

1M 3M M
2

+ −= −     (3.95) 

For the stretch condition (equation (3.76)), the time marching can be obtained by 

Taylor expansion 
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(n 1) (n) m m
m m jk n

jk n

(n) 2
m mijlk il jk mn n

(n) t0(n) t1(n)
m mjk jk mn n

G G0 2G 2G 2 U 2
U

 2G 2K U U 2C

 2G D U 2D

+ ∂ ∂
= ≈ + ∆ + ∆λ

∂ ∂λ

= + ∆ − ∆λ

= + ∆ − ∆λ

  (3.96) 

Using equation (3.95) and (3.96), the equation of motion and the stretch condition can be 

re-written as follows: 

t0(n) t1(n)
ijlk jk lin n ilK U K R∆ + ∆λ = −     (3.97) 

t0(n) t1(n)
mjk jk mn n mD U D G∆ + ∆λ = −     (3.98) 

where  

( )
1
2

(n )t0(n) (n) (n 1) 1 2
ijlk ijlk ijlk ijlk n nijlk2

2K 3M M K K
t

−−= − + + λ
∆

   (3.99) 

t1(n) 2 (n)
lin nijlk jkK 2K U=      (3.100) 

t0(n) 2 (n)
mjk nijlk jkD 2K U=      (3.101) 

t1(n) t1(n)
mn mn mnD 2C 2D= − =      (3.102) 

( ) ( )
1
2

(n) (n 1) (n) (n 1)
il ijlk ijlk il il2

(n )1 (n) 2 (n)
ijlk jk n nijlk jk

2R 3M M 3F F
t

    2K U 2 K U

− −

+

= − + −
∆

− − λ
  (3.103) 

(n) (n)
m mG 2G=       (3.104) 

The resultant forms of the equation (3.97) and (3.98) are similar to the static problem. 

The equation of motion in matrix form can be written as follows: 

( )(n) (n)∆ =K y F    at time step n  (3.105) 

r (n 1)+= −F F       (3.106) 

Using Adams-Moulton with Adams-Bashforth scheme, the numerical methods in this study, 
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mixed implicit and explicit scheme is used to avoid iterative methods in time domain 

problem. 

 

3.6. Modeling of the Seafloor 

 

For the catenary mooring system, a portion of a mooring line near the anchor usually 

lies on the seabed. The interaction between steel catenary riser and the seafloor is also very 

important in the riser design. Due to this reason, the interaction between mooring line (or 

riser) and seafloor is modeled. In the numerical modeling, the horizontal friction between 

line and seafloor are neglected. However, in vertical direction, the seafloor is modeled as 

elastic foundation, and the dynamic bottom boundary conditions are shown in following 

equations: 

1f 0= , 2f 0= , 
2

3 3
3

3

c(r D)         for r D 0
f

0                      for r D 0
 − − <= 

− ≥
  (3.107) 

where D represents the water depth or vertical distance between the seafloor and the origin 

of the coordinate, and 3r  is the z-component of the line position vector. Include seafloor 

interaction, the equation of motion is re-written as follows: 

( ) ( )a 1 2 f
ijlk ijlk jk ijlk n nijlk jk il ilM M U K K U F F+ + + λ = +    (3.108) 

where 

L 2
f l i3 3 30
il

3

L 2
l i3 i3 k jk 30

3

A c(r D)         for r D 0
F

0                                   for r D 0

A c( A U D)     for r D 0
    

0                                         for r D 0

 δ − − <= 
− ≥

 δ δ − − <= 
− ≥

∫

∫
   (3.109) 
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and, 

i3

1       for i=3
0       otherwise


δ = 


  (Kronecker Delta)  (3.110) 

In the static analysis, the stiffness matrix is modified as follows: 

 
f

3 il
ijlk

jk

L (n) 2
l i3 j3 k m3 n mn 30

3

FK
U

2A c A ( A U D)     for r D 0
    

0                                                       for r D 0

∂
=

∂

 δ δ δ − − <= 
− ≥

∫
  (3.111) 

The additional stiffness 3
ijlkK  from seafloor is added to t0

ijlkK . In the time domain 

analysis using the trapezoidal rule, the stiffness matrix modified as follows: 

( )t (n 1) f f (n 1) f (n)
il il ilt (n)

3 f (n)
ijlk jk il

tF dt F F
2
t               K U 2F

2

+ +∆
= +

∆  = ∆ + 

∫
     (3.112) 

The equation of motion include seafloor effects finally written as follows: 

( )

1 1
2 2

1 1
2 2

(n ) (n )1 2 2 (n)
ijlk ijlk n nijlk jk nijlk jk n2

(n ) (n )(n) (n) (n 1) f (n) 1 (n) 2 (n)
ijlk jk il il il ijlk jk n nijlk jk2

4 M K K U 2K U
t
4 M V 3F F 2F 2K U 2 K U
t

+ −

+ +−

 + + λ ∆ + ∆λ ∆ 

= + − + − − λ
∆

 (3.113) 
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CHAPTER IV 

 

4. INTEGRATED MODELING OF PLATFORM AND 

MOORING/RISER 

 

4.1. Introduction 

 

In this chapter, the coupling between platform and mooring line (or riser) is discussed. 

In most cases, the boundary conditions applied to mooring lines are the constraints at the 

two ends of the line: the upper end of the lines are connected to the floating platform and is 

forced to move with the platform, and the lower end are connected to structures such as 

anchors and templates at the seafloor. As discussed in Chapter II, the floating platform is 

modeled as a rigid body with motion in six degrees of freedom. The motion of the platform 

gives the dynamic boundary condition at the upper end of the mooring lines. On the other 

hand, the mooring lines give the additional restoring force to the floating platform. The 

types of connection between the mooring lines and the floating platform can be modeled 

using combinations of translational springs and rotational springs. Another type of 

connection is to use a viscous damper, which is intended to subdue the high frequency 

resonance of the tensioned lines, such as the tendon of a TLP.  

In deep water, the inertia effect as well as hydrodynamic force from mooring lines and 

risers cannot be neglected in analyzing a floating platform. Due to this reason, the coupled 

analysis of floating platforms with mooring lines and risers is important. Ran (2000) has 

developed a mathematical formulation of these coupling effects. Therefore, in the first part 
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of this chapter, the single point coupling model is reviewed.  

The single point coupling model can analyze the mooring lines and a steel catenary 

riser system. However, the rigid vertical riser system for a spar platform cannot be 

modeled correctly with the single point coupling model. In the second part of this chapter, 

the newly developed multi-contact coupling with a nonlinear gap boundary condition is 

discussed. The spar platform (classical spar and truss spar), which is the target structure in 

this research, uses a vertical rigid riser system with a dry tree. The vertical riser system is 

generally supported by freely floating buoyancy-can (e.g. classical spar and truss spar 

platform) or hydraulic/pneumatic cylinder (e.g. TLP). The previous numerical model in 

WINPOST, the riser system includes a buoyancy-can and it is modeled as truncated 

simplified elements. The risers are modeled up to keel and the buoyancy-cans are modeled 

as the top tension of each riser. The truncated riser model ignores the interaction between 

risers and support guide frames inside of the spar moon-pool. Thus, the truncated riser 

system ignores the additional restoring force and Coulomb damping effect caused by the 

interaction between risers and support guide frames, and consequently, the model results 

overestimate the spar hull motion. In Tahar, Ran and Kim (2002), the interaction effects 

between risers and riser guide frames are modeled as a simple inverted pendulum model as 

well as more rigorous riser modeling through riser guides inside the moon-pool. Tahar, Ran 

and Kim (2002), the interaction between risers and riser guide frames are modeled as 

horizontal springs with large stiffness to restrict the horizontal motion of the risers while 

allowing them to move freely in vertical direction. In the actual system the interaction 

between the riser and riser guide frame is called gap-contact. The horizontal connected 

spring ignores the gap-contact effect between riser and riser guide frame. The contact-
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induced force between riser and riser guide frame also rise to gives Coulomb (frictional) 

damping to spar heave motion. Thus, in this chapter, the mathematical formulations for the 

interactions between risers and riser guide frames are developed by using four different 

types of spring connections (e.g. connected spring, piecewise linear gap spring, piecewise 

quadratic gap spring and cubic spring approximation). The mathematical formulation for 

Coulomb damping between risers and riser guide frames is also developed. In the last part 

of this chapter, the mathematical formulation for a nonlinear pneumatic vertical riser 

support system is developed. In this part, the nonlinear dynamic boundary condition on top 

of the risers is introduced. Thus, in this chapter, detailed mathematical a formulations for 

the interaction between a rigid vertical riser and floating platform is developed. 

 

4.2. Spring Coupling between the Platform and Mooring Lines 

 

As mentioned in Chapter III, equation (3.73) describes the nodal resultant force 

{ }T
1 2 3N N , N , N=  and moment { }T

1 2 3L L ,L ,L= . During the assembling the adjacent 

element, these force and moment are canceled out. However, the mooring lines or risers are 

connected to platform as well as seafloor, thus the first node and end node of the line has a 

dynamic boundary condition. Therefore, when the end node of line is connected to 

platform by linear springs or rotational springs, the resultant force and moment are equal to 

the force applied on the node from the spring. If a small angle assumption is valid, the 

forces and the moments on the end node of the line are written as: 

( )L
i i i i j k iN K X p p r= + + θ × −    (4.1) 
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i
i i j k

i

rL K e e
r

θ  ′
= + θ × −  ′ 

   (4.2) 

where L
1K , L

2K  and L
3K  are the linear spring constant in x, y, and z direction, 

respectively. The terms iX  and iθ  represent translational and rotational motion of the 

platform. The tem ip  represents the position vector of the point on the platform where the 

springs are attached, and ir  is the position vector of the end node of the line which is 

attached to the rigid body by springs. Kθ  is the rotational spring constant, and ie  is a 

unit vector which denotes the direction of the spring reference. ir ′  is the tangent to the 

riser centerline. For the stretch condition i

i

r
r
′
′

is used to ensure the unity of the tangent. 

Equation (4.1) and (4.2) show the spring force can be calculated through relative 

displacement of attached point between platform and mooring line. As mentioned before, 

the end node of element attached to platform, and thus the position vector ir , and ir ′ can 

be written as: 

1 13r U= , 1 23r U= , 1 33r U=     (4.3) 

1 14r U′ = , 1 24r U′ = , 1 34r U′ =     (4.4) 

The additional restoring forces and moments from the mooring line to platform can be 

written as follow: 

L = −F N      (4.5) 

0θ =F       (4.6) 

L = × −M P N      (4.7) 

θ ′= × ≈ ×M L r L e     (4.8) 

For the convenience, the cross product term in equation (4.1) and (4.2) (i.e. j kpθ × , 
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j keθ × ) can be written as  

( )L
i i i i j ji iN K X p C r= + + θ −     (4.9) 

i
i i j ji

i

rL K e D
r

θ  ′
= + θ −  ′ 

   (4.10) 

where 

3 2

3 1

2 1

0 p p
p 0 p
p p 0

− 
 = −
 − 

C     (4.11) 

3 2

3 1

2 1

0 e e
e 0 e
e e 0

− 
 = −
 − 

D     (4.12) 

and using subscript notations for connector force on the rigid body as 

i iF N= −      (4.13) 

i k ki k kiM N C L D= +     (4.14) 

The connector forces and moments, equation (4.9), (4.10), (4.13), and (4.14), are included 

in the relative motion equations of the mooring line and the platform as external forces and 

moments. In the following static and dynamic analysis, derived formulation defines the 

coupling between the line and the platform.  

In the static analysis of the mooring line and riser, the Newton’s iteration method is 

used. Thus, the connector force at the end node connected to the spring in (n+1)th iteration 

can be approximate from the (n)th iteration. 

(n 1) (n) i i i
i i j j j

j j j

N N NN N r X
r X

+ ∂ ∂ ∂
= + ∆ + ∆ + ∆θ

∂ ∂ ∂θ
   (4.15) 

(n 1) (n) i i
i i j j

j j

L LL L r
r

+ ∂ ∂
= + ∆ + ∆θ

′∂ ∂θ
    (4.16) 
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Similarly, the contact force on the platform at (n+1)th iteration can be approximated 

by: 

(n 1) (n) i i i
i i j j j

j j j

F F FF F r X
r X

+ ∂ ∂ ∂
= + ∆ + ∆ + ∆θ

∂ ∂ ∂θ
    (4.17) 

(n 1) (n) i i i i
i i j j j j

j j j j

M M M MM M r r X
r r X

+ ∂ ∂ ∂ ∂′= + ∆ + ∆ + ∆ + ∆θ
′∂ ∂ ∂ ∂θ

  (4.18) 

The equation (4.15) and (4.16) show that the line at connected node is coupled with the 

unknown platform motion. The second term in the right hand side of equation is included 

in the equation of line element connected to the platform, and the third and the fourth terms 

in the equation (4.17) and (4.18) are included in the equation of the platform. The equation 

for line and platform are coupled by the third and fourth terms in the equation (4.15), the 

third term in equation (4.16), second term in the equation (4.17) and second and third 

terms in equation (4.18). At each iteration, the coupled algebraic equations are solved to 

obtain the solution of the line and the rigid body simultaneously. The iteration continues 

until a specific tolerance is reached.  

In the time domain integration, the connector force on the line is added to the 

equation of the line and the equation of motion of platform and is integrated from time 

(n)t  to (n 1)t + : 

( )
( n 1)

( n )

t
(n 1) (n) (n)i i i

i i i j j j i
j j jt

N N Nt tN dt N N r X 2N
2 2 r X

+

+
 ∂ ∂ ∂∆ ∆

= + ≈ ∆ + ∆ + ∆θ +  ∂ ∂ ∂θ 
∫  (4.19) 

( )
( n 1)

( n )

t
(n 1) (n) (n)i i

i i i j j i
j jt

L Lt tL dt L L r 2L
2 2 r

+

+
 ∂ ∂∆ ∆

= + ≈ ∆ + ∆θ +  ′∂ ∂θ 
∫    (4.20) 

( )
( n 1)

( n )

t
(n 1) (n) (n)i i i

i i i j j j i
j j jt

F F Ft tFdt F F r X 2F
2 2 r X

+

+
 ∂ ∂ ∂∆ ∆

= + ≈ ∆ + ∆ + ∆θ +  ∂ ∂ ∂θ 
∫   (4.21) 
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( )
( n 1)

( n )

t
(n 1) (n)

i i i
t

(n)i i i i
j j j j i

j j j j

tM dt M M
2

M M M Mt              r r X 2M
2 r r X

+

+∆
= +

 ∂ ∂ ∂ ∂∆ ′≈ ∆ + ∆ + ∆ + ∆θ +  ′∂ ∂ ∂ ∂θ 

∫
  (4.22) 

Like the static analysis, the coefficient in the above equations are associated with the 

time domain equations of the platform and the element of the line contact to the platform. 

Using symbol AB
ijK  to indicate the tangential stiffness coefficient for degree of freedom B 

j in equation A i, terms in (4.15) through (4.22) can be shown as follow: 

( ) ( )

rr Li
ij i ij

j

rX Li
ij i ij

j

r Li
ij i ij

j

ij i jr r i
ij 1/ 2 3/ 2

j m m n n

r i
ij ij

j

NK K
r
NK K
X
NK K C

r rLK K
r r r r r
LK K D

θ

′ ′
θ

′θ
θ

∂
= − = δ

∂
∂

= − = − δ
∂
∂

= − =
∂θ

 ′ ′δ∂
= − = − 

′∂ ′ ′ ′ ′  
∂

= − =
∂θ

 

Xr Li
ij i ij

j

XX Li
ij i ij

j

X Li
ij i ij

j

r i
ij ij

j

r i
ij ij

j

i
ij i ki kj ki kj

j

FK K
r
FK K
X
FK K C

MK K C
r
MK K D
r

MK K C C K D D

θ

θ
θ

′θ
θ

θθ
θ

∂
= − = δ

∂
∂

= − = − δ
∂
∂

= − = −
∂θ
∂

= − =
∂
∂

= − =
′∂

∂
= − = +

∂θ

(4.23) 

The element tangential stiffness matrix that needed to be added into the end node of 

the leg is  

rr
ij j i

r r
j iij

K 0 r N
r L0 K ′ ′

  ∆   =     ′∆      
     (4.24) 

The element tangential stiffness matrix that needed to be added into the end node of 

the leg is  

XX X
ij ij j i

X
j iij ij

K K X F
MK K

θ

θ θθ

  ∆   =     ∆θ      
    (4.25) 
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Finally, the coupling terms of element tangential stiffness matrix which need to be 

added into the global matrix are  

rX r
ij ij j i

r
ij j i

Xr
j iij

r r ijij ij

0 0 K K r N
0 0 0 K r L

X FK 0 0 0
MK K 0 0

θ

′θ

′θ θ

  ∆        ′∆     =     ∆      ∆θ      

   (4.26) 

The detailed matrix formulation is shown in the last part of this chapter. 

 

4.3. Damper Connection between the Platform and Mooring Lines 

 

As mentioned before, another available connection in the dynamic problem is a 

viscous damper. In this study, the damper is modeled as a damping force linearly related to 

the relative translational velocity between the connecting point on the platform and the top 

node of the line. The damping force ( DN ) on the connected node of the line element is: 

( )D
i i j ji iN D X C r= + θ −     (4.27) 

where D is the viscous damping coefficient. X  and θ  are the translational and rotational 

velocity of the rigid body, and r  is the velocity of the attached node. Matrix C  is 

identical as equation (4.11). The damping force on the rigid body is D D
i iF N= − . 

In time domain, integration is as follows: 

( ) ( ) ( )

( n 1) ( n 1) ( n 1) ( n 1)

( n ) ( n ) ( n ) ( n )

t t t t
D
i i ji j i

t t t t

i ji j i

N dt DdX C d Ddr

              D X C D r

+ + + +

= + θ −

= ∆ + ∆θ − ∆

∫ ∫ ∫ ∫    (4.28) 

( ) ( ) ( )
( n 1)

( n )

t
D
i i ij j i

t

N dt D X C D r
+

= − ∆ + ∆θ + ∆∫    (4.29) 



 

 

74

The coefficient in equation (4.28) and (4.29) is added to the equation of the line and the 

platform. 

 

4.4. Multi-Contact Coupling between the Spar Platform and Risers 

 

As mentioned before, the spar platform generally uses buoyancy-can supported 

production risers. There are several guide frames inside of the spar moon-pool, and the 

function of these guide frames is to support the riser horizontal direction and prevent 

collision. Thus, when the spar moves, the buoyancy-cans give additional moments to resist 

the hull pitch/roll motions and contact forces at support guide frames. The shape of 

buoyancy-can is circular cylinder, and the guide frame is also a round shape, and thus the 

contact between buoyancy-can and riser support frame can be modeled as point contact. In 

the numerical modeling, the point contact is modeled as a concentration force using a 

translational spring. Thus, the resulting contact forces affect both the motion of the riser 

and the motion of the spar hull. Because the spar has several guide frames; the riser and the 

spar have the same number of multi-contact couplings as guide frames. In equation (3.40), 

the first term on the right hand side is the bending moment and the second term in the right 

hand side is force at the node, and if there is no multi-contact coupling, these two terms 

canceled for internal element in global force vector to satisfy the compatibility between 

elements. However, when the support guide frame touches the riser, the contact force is 

applied to the node and the second term of equation (3.40) does not vanish from which the 

contact force can be calculated. The derivations of static and time domain dynamic 

formulation are identical to the single point coupling. However, in the global matrix 
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formation, the difference between single point coupling and the multi-contact coupling is 

the dimension of the coupling matrix. The detailed matrix formation is shown in the last 

section of this chapter. In this study, four different types of multi-contact coupling models 

are developed to include model the nonlinear gap boundary condition between riser and 

guide frames.  

 

4.4.1. Connected Spring Model 

 

In this model, the guide frames are modeled as a horizontal spring with large stiffness 

to restrict the horizontal motion of riser, and the gap effects are ignored. Fig. 4.1 shows a 

schematic drawing of connected spring model.  

 

 

Free to Move Vertical
Direction
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(N-1)th
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Fig. 4.1. Connected spring model. 
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The contact force between the risers and guide frames is modeled as follow; 

( )L
1 1 1 1 2 3 3 2 1N K X p p p r= + + θ − θ −     (4.30) 

( )L
2 2 2 2 1 3 3 1 2N K X p p p r= + + θ − θ −     (4.31) 

3N 0=        (4.32) 

where L
1K  and L

2K  are stiffness in x and y direction, respectively. 1X  and 2X are the 

translational motion of the rigid body at its origin of the body coordinate system, and 1θ , 

2θ  and 3θ  are the angular motion of the rigid body. The terms 1p , 2p  and 3p  are the 

position vectors (in body coordinate) of the point on the platform where the multi-contact 

occurs, and 1r  and 2r  are the nodal position of the riser which are expected to contact 

with guide frame. The contact forces and moments on the platform are identical to 

equation (4.13) and (4.14) 

 

4.4.2. Piecewise-Linear Gap-Contact Spring Model 

 

The contact between the risers and the riser guide frames is gap-contact. In the actual 

riser support system, the buoyancy-cans and riser guide frames have a gap between them, 

and the gap makes it possible for the riser to move freely in the vertical direction. Fig. 4.2 

shows the gap spring stiffness. In the gap-contact model, when the relative motion between 

the buoyancy-cans and riser guide frames is greater than the gap, the contact force is 

applied to the risers and guide frames, and the relative motion between the buoyancy-cans 

and the riser support frames are less than the gap, and the contact force vanishes. The gap-

contact force between risers and guide frames is modeled as follows:  
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Fig. 4.2. Piecewise linear gap spring model. 

when, ( )i i j j i iX p p r+ + θ × − ≥ ∆  then 

( )L
1 1 1 1 2 3 3 2 1 1N K X p p p r= + + θ − θ − − ∆    (4.33) 

( )L
2 2 2 2 1 3 3 1 2 2N K X p p p r= + + θ − θ − − ∆    (4.34) 

3N 0=        (4.35) 

when, ( )i i i j j i iX p p r−∆ < + + θ × − < ∆  then 

1N 0=        (4.36) 

2N 0=        (4.37) 

3N 0=        (4.38) 

when, ( )i i j j i iX p p r+ + θ × − ≤ −∆  then 

( )L
1 1 1 1 2 3 3 2 1 1N K X p p p r= + + θ − θ − + ∆    (4.39) 

( )L
2 2 2 2 1 3 3 1 2 2N K X p p p r= + + θ − θ − + ∆    (4.40) 

3N 0=        (4.41) 

where, 1∆  and 2∆  are the gap distances between the risers and the riser guide frames. 
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The contact forces and moments on the platforms are same as shown in equation (4.13) 

and (4.14). In this model, the gap between buoyancy-cans and the riser guide frames is 

correctly modeled. However, the piecewise linear gap-contact spring model has 

discontinuity in the stiffness, which may cause numerical problems. In the simulation, the 

horizontal guide frames are modeled as horizontal spring with large stiffness, but its value 

may have numerical limitation at 10e+06(N/m). Due to this limitation, the next two models, 

piecewise-quadratic gap-spring model and cubic spring model are developed. 

 

4.4.3. Piecewise-Quadratic Gap-contact Spring Model 

 

In this model, the gap-contact stiffness is modeled as quadratic spring. The gap-

contact mechanisms are the same as a piecewise-linear gap-spring model except a 

quadratic spring is used. The quadratic spring can model hardening of guide frame also. 

The piecewise quadratic gap spring stiffness is shown in Fig. 4.3, and the formulations are 

as follow: 
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Fig. 4.3. Piecewise quadratic gap-contact spring model. 
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when, ( )i i j j i iX p p r+ + θ × − ≥ ∆  then 

( )2L
1 1 1 1 2 3 3 2 1 1N K X p p p r= + + θ − θ − − ∆    (4.42) 

( )2L
2 2 2 2 1 3 3 1 2 2N K X p p p r= + + θ − θ − − ∆    (4.43) 

3N 0=        (4.44) 

when, ( )i i i j j i iX p p r−∆ < + + θ × − < ∆  then 

1N 0=        (4.45) 

2N 0=        (4.46) 

3N 0=        (4.47) 

when, ( )i i j j i iX p p r+ + θ × − ≤ −∆  then 

( )2L
1 1 1 1 2 3 3 2 1 1N K X p p p r= − + + θ − θ − + ∆    (4.48) 

( )2L
2 2 2 2 1 3 3 1 2 2N K X p p p r= − + + θ − θ − + ∆    (4.49) 

3N 0=        (4.50) 

In this model, the tangential stiffness of guide frame quadratically increases when the 

riser touches the guide frame. The continuity of slope at the beginning or the contact solves 

the numerical difficulty faced by the piecewise-linear gap spring model. The relative 

distance of the risers and riser guide frames should be checked at each time step. 

 

4.4.4. Cubic Spring Approximation 

 

In this model, the gap-contact spring stiffness is approximated by a cubic curve. 

Although not exactly modeling the gap, the advantage of this model is reducing the 
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computation time and increasing numerical stability in the simulation. For the piecewise-

linear gap-contact spring model and the piecewise-quadratic gap-contact spring model, the 

relative displacement and gap distance have to be checked every time steps, but the cubic 

spring model does not need this procedure. Fig. 4.4shows the cubic spring approximation 

stiffness.  
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−Κδ

Κδ3

 

Fig. 4.4. Cubic spring approximation model 

 

The formulations are as follow; 

( )3L
1 1 1 1 2 3 3 2 1N K X p p p r= + + θ − θ −     (4.51) 

( )3L
2 2 2 2 1 3 3 1 2N K X p p p r= + + θ − θ −     (4.52) 

3N 0=        (4.53) 

The contact forces and moments on the platforms are same as equation (4.13) and 

(4.14).  
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4.5. Alternative Riser Support System Modeling 

 

The pneumatic cylinder can be modeled as ideal-gas equation. The pneumatic 

cylinder for each riser acts as a soft spring and gives additional restoring force to the 

platform motion. Fig. 4.5 shows schematic drawing of the pneumatic cylinder.  

 

Hydropneumatic Cylinder

Riser Guide
Frame

Centralizer

Riser

Hydropneumatic Cylinder

Riser Guide
Frame

Centralizer

Riser

Z0
Z1

 

Fig. 4.5. Schematic drawing of pneumatic riser support cylinder. 

 

The hydropneumatic cylinder force on the riser and the platform can be modeled as 

follow: 

0 0 1 1P V P V=     (4.54) 

1 1 0 0P AZ P AZ=     (4.55) 

1 1 0 0F Z F Z=      (4.56) 

0
1 0

1

ZF F
Z

=      (4.57) 

where, 0P  and 1P  are the pressure, 0V  and 1V  are the volume inside, A  is the cross 

sectional area of the cylinder, 0Z  and 1Z  are the stroke, 0F  and 1F  are the tension. 
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From equation (4.55) 1Z  can be expressed as: 

1 0 3 3 1 2 2 1 3Z Z (X p p p r )= − + + θ − θ −    (4.58) 

The dynamic top tension from pneumatic cylinder can be modeled as: 

0
3 0

0 3 3 1 2 2 1 3

ZN T
Z (X p p p r )

 
=  − + + θ − θ − 

  (4.59) 

where 0T  represent initial tension. The forces and moments on the platforms are same as 

equation (4.13) and (4.14). Due to the location of the pneumatic cylinder connection point 

between the end of riser and the platform, the derivations of static and time domain 

dynamic formulations and matrix formation are identical to the single point coupling. 

 

4.6. Coulomb Damping between the Platform and Risers 

 

As mentioned before, when the riser contacts the guide frame, it also induces 

frictional damping to resist hull heave motion. This frictional damping, is commonly called 

Coulomb damping, and it has three different characteristics compared with viscous 

damping. The differences between Coulomb damping and viscous damping are; First, with 

Coulomb damping, the amplitude decays linearly rather than exponentially. Second, the 

motion under Coulomb friction comes to a complete stop, at a potentially different 

equilibrium position than when initially at rest. Whereas, a viscously damped system 

oscillates around a single equilibrium with infinitesimally small amplitude. Finally, the 

oscillation frequency of a system with Coulomb damping is the same as the undamped 

frequency, whereas viscous damping alters the frequency of oscillation (Inman, 1996). Fig. 

4.6 shows the Coulomb damping model. 
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Fig. 4.6. Schematic Drawing of Coulomb Damping. 

 

The coulomb damping from contact force is formulated as follow: 

( ) ( )2 2
3 3 1 2 2 1 3 1 2N sgn(X P P R ) N N= µ + θ − θ − +   (4.60) 

3 3F N= −        (4.61) 

where 1N  and 2N  are the contact force on riser in x and y direction and µ  is the 

coulomb damping coefficient. The force vector, 3N and 3F , are added to the force vector 

at the right side of the equations of the riser element and the platform. The derivations of 

time domain dynamic formulation are identical to the single point coupling. However, 

Coulomb damping effects is added to the nodes that are in contact with guide frames.  

 

4.7. Coupled Global Matrix  

 

As mentioned before, the equation of motion of the platform can be formulated as 

6 6×  stiffness (for dynamic problem inertia, damping, and stiffness) matrix with 6 rows 

displacement and external force vectors. For equation of mooring lines and riser also can 
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be formulated as 8 (N 1) 1× + −  rows and column stiffness matrix (for dynamic problem 

inertia, damping, and stiffness) with 8 (N 1) 1× + −  rows displacement and external force 

vectors for a single line. To formulate the coupling between platform and mooring lines 

and risers, the matrix becomes sparse due to coupling terms. For example, when one 

mooring line and one riser is coupled with the platform, the assembled global stiffness 

matrix has the following form: 

 

KM

KR

KC

KC KC KC KC

KC

KC

KC

KC

KC KPf

 

Fig. 4.7. Coupled global matrix (1-mooring with 6-element, 1-riser with 4 multi-

contact coupling 6-element). 
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where MK  matrix represents the coefficient from mooring line, RK  matrix represents 

coefficients from riser, CK  matrix represents the coupling coefficient matrix between line 

and platform, and PfK  matrix represents the coefficients from the platform. The global 

matrix clearly shows the difference between single point coupling and multi-contact 

coupling. Only the end of the node of mooring line connected to the platform, thus the 

coupling term exists in end node of the line. On the other hand, if the riser is steel vertical 

riser, then the riser has multiple contact points with platform, and thus the coupling 

coefficient matrix increases in the riser in the global matrix. As shown in Fig. 4.7, the lines 

are not directly coupled to each other but coupled through the platform.  
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CHAPTER V 

 

5. CASE STUDY 1: BUOYANCY-CAN EFFECT ON SPAR 

PLATFORM 

 

5.1. Introduction 

 

In the preceding chapters, the theory and numerical methods for the coupled dynamics 

of a floating structure with mooring lines and risers have been discussed. In this chapter, 

the buoyancy-can effects on the global spar motion are investigated. As mentioned before, 

the buoyancy-cans inside of spar moon-pool are ignored or simplified in previous studies. 

Due to ignorance of riser effects (i.e. buoyancy-can effects), the spar heave and pitch 

motions are over estimated in simulation as well as in experiments. In the simulations, six 

different spar platforms are modeled and the results are systematically compared to capture 

the buoyancy-can effects including the gap boundary condition as well as Coulomb 

damping effects. For simplification, the additional excitation on risers (i.e. buoyancy-can) 

from moon-pool sloshing and riser-riser interactions are not considered. The simulations 

are conducted for a spar platform in 914.4 m (3000 ft) water depth exposed to 100-year 

Gulf of Mexico hurricane condition. The simulation results are also compared with 

available experiment data and other simulation results. The results from this case study 

clearly show the buoyancy-can effects on the global spar motion.  
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5.2. Description of the Spar Platform, Mooring System, and Risers 

 

The spar platform used in this study has length of 214.88 meters, and diameter of 

37.19 meters. For the load condition, the spar has an average draft of 198.12 meters, with a 

total displacement of 220.74 metric ton. The hull consists of three parts: the hard tank in 

the upper part of the hull, the fixed ballast tank at the bottom of the hull, and the tank in the 

middle of the hard and the fixed ballast tank. Each tank has its own purpose. The hard tank 

provides buoyancy force to support the platform weight, and the fixed ballast tank provides 

stability. The skirt tank serves as the connection between the hard tank and fixed ballast 

tank. The principle particulars of the spar platform are summarized in Table 5.1and 

illustrated in Fig. 5.1. 

 

Ballast Tank Depth:
67.6 m

KB = 164.32 m

KG = 89.27 m

17.7 m

37.19 m

Hull Draft = 198.12 m

Top View of Guide Frame

17.7 m
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M2

M3

M4M5

M6

M7

M8
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M10
M11 M12

M13

M14

Mooring and Riser Configuration

Production Riser
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Water Injection
Gas Export Riser

Drilling Riser

 

Fig. 5.1. The illustration of the spar platform and mooring/riser configuration (not to 

scale). 
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Table 5.1. Principle particulars of the spar platform. 

Designation Unit Quantity 

Length m 214.88

Diameter m 37.19

Draft  m 198.12

Hard tank depth m 67.06

Well bay dimension (25 slots) m 17.7 ×  17.7

KB m 164.59

KG m 125.7

KG (based on total displacement) m 89.27

Light ship weight  N 5.673E+08

Displacement N 2.214E+09

Water weight  

(water in ballast tank and moon-pool) 
N 1.564E+09

Vertical mooring tension N 3.219E+07

Vertical riser tension N 5.034E+07

Pitch radius of gyration m 66.228

Yaw radius of gyration m 12.829

Drag coefficient - 1.5

 

The light ship weight means the net buoyancy, which include hull, topsides and hard 

tank. The total displacement means the light ship weight plus mooring lines, water in the 

ballast tank and moon-pool. The spar platform has 14 mooring lines and 23 risers. The 

arrangement of mooring lines and risers are shown in Fig. 5.1. The characteristics of 

mooring line and riser are summarized in Table 5.2 through Table 5.4 

 

 



 

 

89

Table 5.2. Spar mooring system configuration. 

Directional Spread  Omni-direction 

No. Mooring Lines 14 

Chain 5 – 1/4” K4 Studless Chain 

Wire 5 – 3/8” Sheathed Wire 

 

Table 5.3. Spar mooring characteristics. 

Mooring Lines Dry/Wet weight 
(N/m) 

Axial Stiffness 
(KN) 

Added mass
(N/m) 

5–1/4” K4 Studless Chain 370.93 / 322.71 1.328E+06 48.22
5–3/8” Sheathed Wire 99.10 / 19.79 1.628E+06 19.79

 

Table 5.4. Riser System Characteristics. 

Riser No. 
Top Tension (KN) 

At Keel/At Top of spar 

Axial Stiffness 

(KN) 

Dry/Wet Weight

(N/m) 

Drilling 1 3.269E+03 / 4.167E+03 1.201E+07 595.26 / 366.17

Production 18 2.106E+03 / 2.344E+03 2.994E+06 300.61 / 195.12

Water Injection  2 1.362E+03 / 1.443E+03 1.837E+06 103.28 / 64.64

Oil Export 1 1.738E+03 / 1.872E+03 4.626E+06 296.15 / 163.16

Gas Export 1 8.870E+02 / 9.53E+02 4.626E+06 208.34 / 75.35

 

The schematic drawing of a buoyancy-can inside of the spar moon-pool is shown in 

Fig. 5.2. As mentioned before, a spar platform generally uses buoyancy-can supported 

production risers. There are several guide frames inside of the spar moon-pool, and the 

function of these guide frames is to constraint the riser horizontal motion and prevent 

collision of the risers. Fig. 5.2 shows the gap between buoyancy-can and guide frames. 
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This gap allows the riser to move freely in the vertical direction.  

 

Spar Platform Vertical Riser
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Fig. 5.2. Schematic drawing of a spar riser system. 
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5.3. Description of Case Study and Design Environmental Conditions 

 

In this case study, the multiple contact between the risers and riser guide frames in the 

spar moon-pool are modeled five different ways as an effort to capture the different 

interaction effects between the buoyancy-cans and riser guide frames. In the Case A model, 

the risers are truncated at the spar keel and the top of the riser is supported by a constant 

force representing the buoyancy-cans. Therefore, the riser tension is not included in the 

vertical static equilibrium of the spar hull. In the Case B model, the risers are extended 

through moon-pool. The riser guides are modeled as horizontal spring connected to risers. 

The stiffness of the spring is large enough, as shown in Fig. 5.3, not allow any free 

horizontal motion at the location of the guide frame. Case C is similar to Case B, but the 

Coulomb damping between the buoyancy-cans and riser guide frames is considered. Case 

D is similar to Case C, but the riser guide frames are modeled as piecewise-linear gap-

contact spring. This case accounts for gap effects (zero force during no contact) between 

risers and riser guide frames. If we apply larger spring stiffness for this model, numerical 

problems occur due to the discontinuity. Therefore, we applied relatively soft spring 

representing soft contact. Case E and Case F models are similar to the Case D, but Case E 

uses piecewise-quadratic gap-contact spring and Case E uses cubic springs to model the 

riser guide frame. Among the six cases, Case F best represents the gap effect and relatively 

hard contact between riser and riser guide frame. To show the gap distance effect, two 

different gap distances are simulated for gap spring model (Case D and Case E). The Case 

C, Case D, Case E and Case F models consider Coulomb damping effect. For all models, 

the top of the risers are supported by a constant force representing the buoyancy-cans. The 
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case studies are summarized in Table 5.5. Fig. 5.3 shows the spring constants for guide 

frame model for Case B, D, E, and F. As mentioned before, the piecewise-linear gap-

contact spring model (Case D) has numerical instability problems. To avoid the numerical 

instability, a relatively small spring constant is used in the piecewise-linear gap-contact 

spring model. Due to this reason, it is hard to show the piecewise-linear gap-contact spring 

constant in Fig. 5.3. However, Fig. 5.4 shows the Case D spring constant after the gap-

contact. To compare and verify the gap mechanism, consistent gap distance is very 

important. In Case D and Case E the gap distance can be given by artificially, but cubic 

spring model (Case F) cannot be given by artificially. Fig. 5.4 shows that Case F has 

stiffness between the gap distances, but the tangential stiffness of Case E between the gap 

distances is very small. Due to this reason, the simulation results show a similar gap effect 

in all three (i.e. Case D, Case E, and Case F) models. 

 

Table 5.5. Summary of conditions for fully modeled spar case studies. 

 Riser Model Connection Type Coulomb Damping 

CASE A Truncated 
(Up to Keel) 

Connected Spring 
(Only at Keel) N/A 

CASE B Fully modeled 
(Inside Moon-pool) 

Connected Spring 
(Linear Spring) N/A 

CASE C Fully modeled 
(Inside Moon-pool) 

Connected Spring 
(Linear Spring) Considered 

CASE D Fully modeled 
(Inside Moon-pool) 

Gap Spring 
(Piecewise-Linear) Considered 

CASE E Fully modeled 
(Inside Moon-pool) 

Gap Spring 
(Piecewise-Quadratic) Considered 

CASE F Fully modeled 
(Inside Moon-pool) 

Connected Spring 
(Cubic Spring) Considered 
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Fig. 5.3. Spring constant for multi-contact model. 
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Fig. 5.4. Spring constant for multi-contact model after the gap. 
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As mentioned before, the 100-year hurricane condition in Gulf of Mexico is used in 

this case study. In the numerical modeling, the current is assumed to be steady and the 

irregular wave unidirectional. The wave heading is 180 degree with respect to the global 

axis. A JONSWAP spectrum of significant wave height, .12=sH 19 m (40.0 ft), peak 

periods 14=pT  sec, and overshoot parameter 5.2=γ  was selected to present a typical 

100-year hurricane in the Gulf of Mexico. The hurricane induced current flows from 30 

degrees right of wave direction. The current velocity is assumed to be 1.07 m/sec from 

mean water level to 60.96 m (200 ft) water depths and is reduced to 0.091 m/sec at 91.44 

m (300 ft) and zero at 914.4 m (3000 ft). The wind speed used is 41.1 m/sec (i.e. 1-hour 

averaged) at 10 m above mean water level and wind direction is 30 degrees left of wave 

direction. API (America Petroleum Institute) wind spectrum is used for the generation of 

time varying wind forces (API RP-2A WSD, 1994). Fig. 5.5 shows the environment 

direction of the 100-year hurricane condition in Gulf of Mexico. The time step used in 

time-domain hurricane condition simulation is 0.05 seconds and the total simulation time is 

3 hours (216000 time steps).  
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Fig. 5.5. Environmental direction of 100-year hurricane condition. 

 

5.4. Results and Analysis 

 

5.4.1. Static Offset and Free Decay Simulation 

 

The surge static offset simulation is conducted by pulling VCG (Vertical Center of 

Gravity) of spar in the horizontal direction in calm water. Typical results for surge static 

offset simulation results are shown in Fig. 5.6 through Fig. 5.8. From the static offset 

simulation, results show that the pretension of the mooring line is 3027 KN at the 49-

degree fairlead angle. As surge offset increases, the taut-side becomes more taut and the 

slack-side becomes more slack resulting in less tension. Due to the mooring characteristics, 

the surge static-offset simulations show hardening phenomenon of the mooring line clearly.  
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Fig. 5.6. Platform surge static offset curve (CASE B). 
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Fig. 5.7. Most loaded line tension (CASE B). 
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Fig. 5.8. Least loaded line tension curve (CASE B). 
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To evaluate the damping ratios and natural periods of the spar platform, free decay 

simulations are conducted for the surge, heave and pitch directions. To capture the 

buoyancy-can effects in the free-decay simulations, all the spar models are compared with 

and without riser model in surge and pitch free decay simulations. In the without riser 

model, all the risers are completely removed from the spar platform and only mooring lines 

are modeled.  

The spar surge free decay simulation results are summarized in Table 5.6 and Fig. 5.9 

through Fig. 5.19. Fig. 5.9 shows that the motion amplitude and period of the without-riser 

models are slightly larger than the truncated riser model, the riser contributes to the surge 

damping, however additional surge restoring force from risers decrease surge natural 

period. The damping contribution from riser is expected to be more important as water 

depth increases. The results also shows that the damping ratio from the average of the first 

three peaks and the first seven peaks are significantly different, which shows that the 

damping increase with motion amplitude. Fig. 5.11 through Fig. 5.19 shows the surge free 

decay motion, contact force on the spar, and the nodal reaction force on the riser. It is 

interesting to notice that the phase difference between the surge motion and the contact 

force is 180 degree. This means that the contact force direction at the keel is always 

opposite to the surge free decay motion. In the surge free decay motion result, Case A 

through Case F are virtually same and it shows that different riser modeling (e.g. 

buoyancy-can, gap effect and Coulomb damping) do not change the global surge motion 

appreciably. Fig. 5.12, Fig. 5.15, and Fig. 5.18 show the gap-contact force. When gap-

contact forces are compared, there exist some discrepancy but the differences are small. 

Fig. 5.13, Fig. 5.16, and Fig. 5.19 show the nodal reaction force of the riser. The difference 
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in the nodal reaction forces of the riser can be appreciable depending on gap-contact 

models (Case D, Case E and Case F), and it is interesting to notice that the nodal reaction 

forces of the gap-contact models (Case D, Case E and Case F) have a periodic impact-like 

force. Its magnitude is especially amplified in the case of the piecewise-quadratic gap-

contact spring. On the other hand, connected spring models (Case B and Case C) even 

though they have the greatest stiffness (see Fig. 5.4) do not show impact-like periodic 

behavior in the riser nodal reaction force. These results show that the gap between riser and 

riser guide frame may induce fatigue for the buoyancy-can. 
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Fig. 5.9. Surge free decay motion time series. 
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Fig. 5.10. Surge free decay motion spectrum. 
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Fig. 5.11. Surge free decay motion time series. 
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Fig. 5.12. Contact force on the spar platform at keel (from production riser No.23). 
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Fig. 5.13. Nodal reaction force on riser (production riser No.23, node 11). 
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Fig. 5.14. Surge free decay simulation time series.  
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Fig. 5.15. Contact force on the spar platform at keel (from production riser No.23). 
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Fig. 5.16. Nodal reaction force on riser (production riser No.23, node 11). 
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Fig. 5.17. Surge free decay simulation time series. 
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Fig. 5.18. Contact force on the spar platform at keel (from production riser No.23). 
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Fig. 5.19. Nodal reaction force on riser (production riser No.23, node 11). 
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Table 5.6. Surge free decay simulation results. 

 TN (sec) Damp. Ratio% 
(1st 3 Ave.) 

Damp. Ratio% 
(1st 7 Ave.) 

W/O Riser 257 9.5 5.8
CASE A 257 9.9 6.0
CASE B 257 9.9 6.0
CASE C 257 9.9 6.0
CASE D 257 9.9 6.0
CASE E 257 9.9 6.0
CASE F 257 9.9 6.0
Note: W/O = without 

 

To capture the Coulomb damping effects on the spar heave motion, initial offsets were 

given in pitch and roll directions. The simulation results are summarized in Table 5.7 and 

Fig. 5.20 through Fig. 5.24. In the heave free decay simulations, the Coulomb damping 

force between the risers and riser guide frames is clearly shown in Fig. 5.22 and Fig. 5.24. 

Due to additional damping from friction between the riser and riser guide frame, heave 

damping ratios are increased in the models, which consider Coulomb damping. As 

mentioned before, with Coulomb damping, amplitude decays linearly rather than 

exponentially, and Fig. 5.20 shows that the amplitude of heave free decay motion with 

Coulomb damping (Case C) decays almost linearly compare to the without Coulomb 

damping model (Case B). Fig. 5.21 also shows that the Coulomb damping does not alter 

the frequency of heave motion. Fig. 5.23 shows Coulomb damping force at the spar keel. 

In the Coulomb damping modeling, the Coulomb damping force is proportional to the sum 

of the normal force and frictional coefficient. Fig. 5.24 shows horizontal contact force and 

this graph shows that during the heave free decay test, the horizontal contact forces are 

almost constant. In the case of gap-contact models, the Coulomb friction contributes only 
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when riser contact with the riser-guide frames. The additional damping from coulomb 

damping can be changed with the horizontal force. Therefore, in the 100-year hurricane 

simulation, the Coulomb damping effects will be larger than free decay simulation.  
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Fig. 5.20. Heave free decay simulation results. 
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Fig. 5.21. Heave free decay motion spectrum.  
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Fig. 5.22. Heave free decay simulation time series (CASE C). 
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Fig. 5.23. Coulomb damping force on the spar platform at keel (drilling riser).  
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Fig. 5.24. Horizontal contact force on the spar platform at keel (drilling riser). 
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Table 5.7. Heave free decay simulation results. 

 TN (sec) Damp. Ratio% 
(1st 3 Ave.) 

Damp. Ratio% 
(1st 7 Ave.) 

CASE A 27.81 3.56 2.72 
CASE B 27.81 3.56 2.72 
CASE C 27.81 4.06 3.50 
CASE D 27.81 4.00 3.37 
CASE E 27.81 4.02 3.43 
CASE F 27.81 4.03 3.44 

 

The pitch free decay simulation results are summarized in Table 5.8 and Fig. 5.25 

through Fig. 5.28. Table 5.8 illustrates the effects of the riser and contact models on period 

and damping ratio. It is also shown that the riser appreciably increases the total pitch 

damping. When risers are extended through the inside of the moon-pool, (Case B) the pitch 

natural period is shifted compared to the Case A (riser truncated at the keel). This 

frequency shift is due to the additional pitch restoring moment caused by the inverted 

pendulum effect of the buoyancy-cans. The pitch natural period difference is clearly shown 

in Fig. 5.26. Fig. 5.27 and Fig. 5.28 shows the pitch free decay motions and contact 

moments for the multi-contact model. In these figures, the contact moment induced by the 

contact force has a 180-degree phase difference with the pitch free decay motion. This 

means the pitch motion is reduced when the restoring moment is taken into account. On 

the other hand, different gap-spring models do not influence the pitch damping and pitch 

natural period. The contact moment result for the piecewise-quadratic gap-contact spring 

model (Case E) in Fig. 5.28 has some noise-like fluctuation but it hardly influences the 

global pitch motion. The noise-like fluctuation is caused by the sudden rapid increase 

discontinuity at the initial contact force. Fig. 5.4 shows that the piecewise-quadratic gap-

contact spring model has the largest discontinuity at the point. Whereas, the continuous 
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cubic spring approximation model (Case F) eliminates the noise-like behavior. Thus, from 

a numerical view, the cubic spring approximation model is best for simulation. 
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Fig. 5.25. Pitch free decay simulation time series.  
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Fig. 5.26. Pitch free decay motion spectrum. 
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Fig. 5.27. Pitch free decay simulation time series. 
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Fig. 5.28. Contact moment on the spar platform at keel (from production riser # 23). 
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Table 5.8. Pitch free decay simulation results. 

 TN (sec) Damp. Ratio% 
(1st 3 Ave.) 

Damp. Ratio% 
(1st 7 Ave.) 

W/O Riser 55.6 3.0 2.3
CASE A 55.6 4.5 3.3
CASE B 45.5 4.7 3.5
CASE C 45.5 4.7 3.6
CASE D 45.5 4.6 3.5
CASE E 45.5 4.7 3.5
CASE F 45.5 4.7 3.5
Note:W/O = without 

 

5.4.2. 100-year Hurricane Simulations 

 

To capture the buoyancy-can and gap contact effects on the global spar motion 

response, in this section, the simulation results are systematically compared and 

summarized. Fig. 5.29, Fig. 5.30, and Fig. 5.31 show the wind velocity spectrum, the wave 

spectrum, and wave time series used in simulations. The JONSWAP spectrum used in this 

paper is as follows: 

( )
42 4

s p p a
5

5H 5S( ) 1 0.287 ln exp
16 4

 ω ω 
 ω = − γ − γ ω ω  

   (5.1) 

where Hs is the significant wave height, ω  is frequency, pω  is the peak frequency, and γ 

is the over shooting parameter. The symbol a is defined by  

2
p

2 2
p

( )
a exp

2
 − ω − ω

=  
σ ω  

     (5.2) 

where σ = 0.07 when pω < ω  and σ = 0.09 when pω > ω . 

The input wave spectrum is truncated at 0.2 (rad/sec) < ω< 1.2 (rad/sec) in this study, 
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and wind spectrum is truncated at 2 (rad/sec). 

The API wind spectrum used in this paper is as follows: 

2

5
3

p
p

(z)S( )
1.52 f 1

2 f

σ
ω =

 π + π 

    (5.3) 

where pf  is average factor derived from measured spectrum and is given by  

w
p

0.025V (z)f
z

=     (5.4) 

The symbol σ(z) is the standard deviation of wind speed and related to turbulence intensity. 

The value of σ(z) at 10 meter above mean water level can be expressed as  
0.125

w
z(z) 0.15 V (z)

20

−
 σ =  
 

   (5.5) 

where wV (z)  is the one hour mean wind speed (m/s) z meters above water level. 
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Fig. 5.29. 100-year Gulf of Mexico hurricane wind velocity spectrum. 
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Fig. 5.30. 100-year Gulf of Mexico hurricane wave spectrum. 
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Fig. 5.31. 100-year hurricane wave elevation time series. 

 

The spar surge motion responses are summarized in Table 5.9 and Fig. 5.32 through 

Fig. 5.35. The results show that the effects of the risers inside of the spar moon-pool do not 

change the spar surge motion significantly. In the station keeping view (i.e. surge and sway 

motion), buoyancy-can effect on the surge and sway spar motion is not important. These 

results are consistent with free decay simulation results. In the surge free decay simulation, 

the surge motions are almost identical for each case. The reason is that buoyancy-can 

supported riser system is not connected to the spar platform, thus buoyancy-can effects 
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only changes the mass of spar platform in surge and sway motion. However, the mass 

changes due to buoyancy-can are not large compared to total mass of the spar system. The 

contact force from buoyancy-can in surge and sway directions are also small compared to 

mooring tension. The reason is that the buoyancy-can gives vertical force on riser, 

therefore additional force from buoyancy-can is not enough to changes the horizontal 

motion of the spar platform. Due to these two reason, the spar surge response from all 

cases are almost identical. However, following heave and pitch motion results will clearly 

show the buoyancy-can effect on the spar platform. In this study, the low and wave 

frequencies are defined as ω <0.2 (rad/sec) and 0.2 (rad/sec) < ω < (1.2 rad/sec), 

respectively. 

 

Table 5.9. Comparison of the statistics of surge response (Hurricane Condition). 

Spar Surge Motion in 100-year Hurricane Condition Gulf of Mexico 
 MEAN (m) STD (m) LF STD (m) WF STD (m) EXE (m)

CASE A -21.969 2.015 1.913 0.634 -28.227
CASE B -22.176 2.013 1.912 0.631 -28.413
CASE C -22.176 2.014 1.913 0.631 -28.415
CASE D -22.168 2.015 1.914 0.630 -28.414
CASE E -22.173 2.015 1.914 0.630 -28.416
CASE F -22.172 2.015 1.914 0.631 -28.415
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 
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Fig. 5.32. Surge response time series (CASE A). 
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Fig. 5.33. Surge response time series (CASE B). 
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Fig. 5.34. Surge response time series (CASE D). 
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Fig. 5.35. Comparison of the surge response spectrum (CASE A, CASE B, and CASE 

D). 

 

The spar heave motion responses are summarized in Table 5.10 and Fig. 5.36 through 

Fig. 5.38. In the heave motion, the results show the Coulomb damping effect. Table 5.10 

shows that the heave standard deviation is reduced by 25% and maximum motion is also 

reduced by 12.2% for the Coulomb damping cases. Due to the large horizontal contact 

force from the surge and sway motion, the Coulomb damping effects are increased in the 

100-year hurricane simulation. Comparison between heave free decay motion spectrum 

and heave response spectrum from the 100-year hurricane simulation show that the 

Coulomb damping is proportional to magnitude of the horizontal contact force. From the 

calculated standard deviation, the Coulomb damping effects reduce the heave free decay 

motion by 12 %, but in the 100-year hurricane conditions, the heave motion response 

reduced by 25%. Fig. 5.38 and Table 5.10 also show that the Coulomb damping reduces 

the spar heave motion in the heave natural period region (0.224 rad/sec), and it also shows 

that the first peak caused by the set down, is not affected by Coulomb damping.  
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Fig. 5.36. Heave response time series (CASE B). 
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Fig. 5.37. Heave response time series (CASE C). 
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Fig. 5.38. Comparison of heave response spectrum (CASE B and CASE C).
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Table 5.10. Comparison of statistics of heave response (Hurricane Condition). 

Spar Heave Motion in 100-year Hurricane Condition Gulf of Mexico 
 MEAN (m) STD (m) LF STD (m) WF STD (m) EXE (m)

CASE A -0.239 0.135 0.074 0.109 -0.813
CASE B -0.240 0.135 0.073 0.109 -0.805
CASE C -0.239 0.101 0.072 0.069 -0.707
CASE D -0.239 0.102 0.072 0.069 -0.708
CASE E -0.239 0.101 0.072 0.069 -0.712
CASE F -0.239 0.102 0.072 0.070 -0.709
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 

 

The spar pitch motion responses are summarized in Table 5.11 and Fig. 5.39 through 

Fig. 5.41. The comparison of truncated riser (Case A) and extended riser case (Case B 

through Case E) clearly shows the effect of additional pitch restoring moment by 

buoyancy-cans and risers inside of the spar moon-pool. When the spar heels, the risers will 

contact the support guide frames. Then, the contact forces produce additional pitch righting 

moment. As a result, the mean pitch offset of fully modeled riser cases (Case B through 

Case F) are reduced by 29%, and the standard deviation pitch is reduced by 13% when 

compared with the truncated riser model (Case A) respectively. The reduction of pitch 

standard deviation is mainly due to the increase of pitch damping and stiffness. This means 

that the shift of natural frequency makes the wind loading less influential to the slowly-

varying pitch responses. Interestingly, wave-frequency pitch motions are not influenced by 

the increase of pitch stiffness. Table 5.11 shows that the standard deviation of low-

frequency pitch motion is reduced by 24% when compared to the truncated riser model. 

Due to the reduction in both the mean and standard deviation, the maximum pitch response 

in simulated hurricane conditions is reduced by 24% when compared to the truncated riser 

model. The results show that neglecting the buoyancy-can effects causes an overestimation 
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of the pitch and roll response of the spar platform. 
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Fig. 5.39. Pitch response time series (CASE A). 
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Fig. 5.40. Pitch response time series (CASE B). 
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Fig. 5.41. Comparison of the pitch response spectrum (CASE A and CASE B). 

 

Table 5.11. Comparison of the statistics of pitch response (Hurricane Condition). 

Spar Pitch Motion in 100-year Hurricane Condition Gulf of Mexico 

 MEAN 
(deg.) 

STD 
(deg.) 

LF STD 
(deg.) 

WF STD 
(deg.) 

EXE 
(deg.) 

CASE A -2.316 1.053 0.112 0.082 -6.915
CASE B -1.638 0.903 0.083 0.085 -5.515
CASE C -1.638 0.902 0.083 0.085 -5.511
CASE D -1.644 0.907 0.084 0.085 -5.533
CASE E -1.642 0.904 0.084 0.085 -5.521
CASE F -1.641 0.904 0.084 0.085 -5.522
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 

 

Table 5.12 and Fig. 5.42 through Fig. 5.44 show the most loaded mooring line top 

tension in the 100-year hurricane simulations. Due to almost identical surge motion 

between truncated riser model case (Case A) and fully modeled riser cases (Case B through 

Case F), the most loaded line tension is almost identical. Most of the mooring line tension 

is from slowly-varying surge motion, and buoyancy-can effects do not significantly change 

most loaded mooring line tension.  
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The free decay simulations and 100-year hurricane simulation results clearly show 

that the gap between the buoyancy-can and guide frame gives not change the spar global 

motions. On the other hand, the surge free decay simulation results show that the gap 

between the buoyancy-can and guide frame causes an impact force on buoyancy-can. To 

confirm the gap effect on buoyancy-can, other simulations are conducted for Case D and 

Case E with different gap distances. Fig. 5.45, Fig. 5.46, and Table 5.13 summarize the 

riser nodal reaction force comparison. The results show that the gap distance increases the 

standard deviation and the maximum value of the riser nodal reaction force. Therefore, 

reducing the gap distance reduces the impact force and also reduces the fatigue problem of 

buoyancy-can. The ∆ t of the contact with the piecewise-quadratic gap-contact riser, Case 

E, is also expected to be smaller, thus leads to larger impact. 

 

Table 5.12. Comparison of statistics of mooring tension. 

 CASE A CASE B CASE C CASE D CASE E CASE F
MEAN (N) 4.95E+06 4.96E+06 4.96E+06 4.95E+06 4.96E+06 4.96E+06
STD (N) 6.02E+05 6.04E+05 6.03E+05 6.03E+05 6.03E+05 6.03E+05
EXE (N) 7.81E+06 7.68E+06 7.63E+06 7.62E+06 7.62E+06 7.62E+06
Notes: 
STD = standard deviation; EXE = extreme 
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Fig. 5.42. Most loaded mooring line top tension time series (CASE A). 
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Fig. 5.43. Most loaded mooring line top tension time series (CASE C). 
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Fig. 5.44. Most loaded line top tension spectrum (CASE A and CASE C). 
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Fig. 5.45. Comparison of the nodal reaction force spectrum for production riser # 23 

(CASE C and CASE D, node # 11). 
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Fig. 5.46. Comparison the of nodal reaction force spectrum for production riser # 23 

(CASE C and CASE E, node # 11). 
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Table 5.13. Comparison of riser horizontal nodal reaction force at keel (production 

riser # 23, node # 11). 

 CASE A CASE D CASE E 
 0.00 m 0.05m 0.10m 0.05m 0.10m 
STD (N) 3.22E+04 3.18E+04 3.63E+04 3.26E+04 3.86E+04
EXE (N) 2.04E+05 2.05E+05 2.40E+05 2.26E+05 2.53E+05
Notes: 
STD = standard deviation; EXE = extreme 

 

5.4.3. Comparison with Existing Experimental Data 

 

Zhang and Zou (2002) developed software for predicting buoyancy-can effects on the 

global spar motion and compare their results to existing experimental data. The software 

developed in this study is used to compare with experimental and numerical results 

published by Zhang and Zou (2002). In their study, the risers are modeled through the spar 

moon-pool and frictional damping is considered between riser and riser guide frame. 

However, they did not consider gap between riser and riser guide frame. Thus, their spar 

modeling is very close to Case C herein. In the simulation, they use their own program 

DeepCAT. DeepCAT is the name of the simulation software jointly developed by ABS and 

ABB (Zhang and Zou, 2002). 0.05 is used for the frictional coefficients in the DeepCAT 

simulation. In Case C simulation, a 0.07 frictional damping coefficient is used. Due to 

different coefficients and location of guide frames, the results are different, but the 

reduction rate in pitch response is very close to result of this study.  

Table 5.14 shows the comparison of natural periods from free decay test. The results 

show that Case C has 17seconds and 8 seconds larger surge periods than experiment and 

DeepCAT simulation, respectively. Heave natural periods shows that Case C result is 
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almost identical to the measured heave periods. Pitch natural periods show that Case C is 

stiffer than DeepCAT simulation and measurement results. However, the damping ratio is 

not compared due to information is not provided in the reference. 

Table 5.15 shows the surge motion response results. The results show that Case C 

over estimates the surge motion due to larger surge natural periods. However like Case C, 

the DeepCAT result also show that the buoyancy-can effects are not significant for surge 

response.  

Table 5.16 shows the heave motion response results. The mean and extreme values 

from Case C are slightly larger than DeepCAT simulation and measured results. It is hard 

to find the exact reason because the heave time series and spectrum are not available. One 

of the possible reasons is that larger surge motion in Case C, the heave motion from surge 

set down and set up can be overestimated in heave motion. However, the heave motion 

standard deviation from Case C is closer to measured result. The heave motion from 

DeepCAT shows that the Coulomb damping does not reduce the heave motion. On the 

other hand, Case C clearly shows the Coulomb damping effects on heave motion.  

Table 5.17 shows the pitch motion response results. These results show larger mean 

and extreme values from Case C. However, the reduction rate in Table 5.18 is very similar 

to DeepCAT simulation. The comparisons show that buoyancy-can effects in both 

simulation results are comparable to each other.  

 

Table 5.14. Natural periods comparison. 

 Surge (sec) Heave (sec) Pitch (sec) 
Measured 240 28 49
DeepCAT 245 29 50
Case C 257 27.8 45.5
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Table 5.15. Spar surge response comparison. 

Surge Response in 100 – year Hurricane simulation 
 MEAN (m) STD (m) EXE (m) 
Measured -19.30 2.10 -26.00
DeepCAT (truncated riser model) -19.48 2.08 -25.18
DeepCAT (extended riser model) -19.02 2.13 -25.14
CASE A -21.97 2.02 -28.23
CASE C -22.18 2.01 -28.42
Notes: 
STD = standard deviation; EXE = extreme 

 

Table 5.16. Spar heave response comparison. 

Heave Response in 100 – year Hurricane simulation 
 MEAN (m) STD (m) EXE (m) 
Measured -0.20 0.11 -0.57
DeepCAT(truncated riser model) -0.21 0.09 -0.51
DeepCAT(extended riser model) -0.20 0.09 -0.50
CASE A -0.24 0.14 -0.81
CASE C -0.24 0.10 -0.71
Notes: 
STD = standard deviation; EXE = extreme 

 

Table 5.17. Spar pitch response comparison. 

Pitch Response in 100 – year Hurricane simulation 
 MEAN (deg.) STD (deg.) EXE (deg.)
Measured -1.20 0.80 -4.90
DeepCAT (truncated riser model) -2.00 1.08 -6.37
DeepCAT (extended riser model) -1.53 0.92 -5.02
CASE A -2.32 1.05 -6.92
CASE C -1.64 0.90 -5.51
Notes: 
STD = standard deviation; EXE = extreme 
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Table 5.18. Comparison of pitch motion reduction. 

% of Pitch motion Reduction 
(Truncated riser model Vs. Fully modeled riser) 

 MEAN (%) STD (%) EXE (%) 
DeepCAT 23.5 14.8 21.2
WINPOST 29.2 13.5 24.1
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CHAPTER VI 

 

6. CASE STUDY 2: ALTERNATIVE RISER SUPPORT SYSTEM 

 

6.1. Introduction 

 

In this chapter, the dynamic behavior of a classical spar platform is investigated with 

an alternate riser support system. As mentioned before, the spar platform generally uses 

buoyancy-cans for supporting risers in vertical direction, but as the water depth gets deeper 

the required buoyant force increases due to increasing riser weight. It has been reported 

that the dimensions of a buoyancy-can are 4-meter in diameter and 80-meter long in 1324-

meter water depth. Due to large volume of buoyancy-can, it makes installation difficult, 

particularly from a safety point of view. Thus, the alternative system is to hang the risers 

off the spar platform using pneumatic cylinders rather than the buoyancy-cans. The 

pneumatic cylinder allows the riser to move relative to one another and the spar hull. In 

this chapter, the risers inside of the spar moon-pool are fully modeled with pneumatic 

cylinders, and the results are compared with buoyancy-can model (i.e. Case F in Chapter 

V). 

 

6.2. Description of the Spar Platform, Mooring System and Risers 

 

The dimension, mooring lines configuration and risers configuration of the spar 

platform used in this study is exactly same as Chapter V (i.e. case study 1: buoyancy-can 
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effect on spar Platform) except the riser support system. The principle particulars of the 

spar platform and characteristics of mooring line and riser are summarized in Table 5.1 

through Table 5.4 in Chapter V. Due to the risers are hanging off the spar platform, the 

additional riser pretensions on the spar platform are considered for the pneumatic riser 

support system. The arrangement of mooring lines and risers are shown in Fig. 6.1. Table 

6.1 shows the mooring lines and risers pretension on the spar platform.  

 

Ballast Tank Depth:
67.6 m
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Fig. 6.1. The illustration of the spar platform and mooring/riser configuration (not to 

scale). 
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Table 6.1. Pretension from mooring lines and risers. 

Pretension Unit Quantity 
Vertical mooring tension N 3.219E+07
Vertical riser tension  
(pneumatic riser support system) N 5.034E+07

 

6.3. Description of Case Study and Design Environmental Conditions 

 

As mentioned before, the simulation is conducted for two different spar platforms 

with free decay simulations and the 100-year hurricane condition for the Gulf of Mexico. 

The spar platforms used in the simulations are summarized in Table 6.2. The Case A Spar 

platform uses pneumatic cylinders for supporting riser. Thus, the risers are hanging off the 

topside of spar platform. In the Case A modeling, all the pneumatic cylinders are modeled 

as nonlinear spring rather than constant top tension (i.e. buoyancy-can) on top of the risers, 

and guide frames are modeled as cubic spring with a large spring constant (i.e. Case F in 

Chapter V). Due to absence of the buoyancy-can, rubber type centralizers protect the risers 

when it touches the guide frames. The rubber type centralizer is modeled as a cubic spring. 

The Case B Spar platform uses buoyancy-cans for the supporting risers, and the risers are 

modeled as a freely standing structure. In the Case B modeling, all the buoyancy-cans are 

modeled as constant top tension on top of the risers and uses the identical guide frame 

model (i.e. cubic spring) as Case A.  

To evaluate damping ratio and natural period of the spar platform, free decay 

simulations are conducted. After free decay simulations, the 100-year hurricane 

simulations are conducted for both spar platforms. The environmental condition and 

direction of the 100-year hurricane conditions for the Gulf of Mexico are summarized in 
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Chapter V (Section 5.3). The time step used in time-domain hurricane condition simulation 

is 0.05 seconds and the total simulation time is 3 hours (216000 time steps). 

 

Table 6.2. Summary of the spar platform used in case study. 

 Riser  Guide Frame Coulomb Damping Riser Support Type

CASE A Fully modeled Cubic Spring Considered Pneumatic Cylinder
(Dynamic Force) 

CASE B Fully modeled Cubic Spring Considered Buoyancy-Can 
(Constant Force) 

 

6.4. Results 

 

6.4.1. Free Decay Simulation 

 

Free decay simulation results are shown in Fig. 6.2 through Fig. 6.11. The results 

show that pneumatic cylinders do not change the surge and pitch motion significantly, but 

it is interesting to notice that heave motion is totally different due to additional heave 

restoring force from pneumatic cylinders. To see the pneumatic cylinder effect, in the 

heave free decay simulation, Coulomb damping effect is not considered. The Case A heave 

free decay time series shows that the first down crossing peak is larger than Case B. The 

reason is that large initial heave offset stiffens the pneumatic cylinders, and it makes 

springing-like phenomena in first down crossing peak. After first down crossing heave 

motion, the Case A Spar has smaller motion amplitudes and period than those of the Case 

B Spar platform. The heave natural period difference is clearly shown in the Fig. 6.4 and 

Fig. 6.5. Fig. 6.6 through Fig. 6.9 show the time series of the top tension on the drilling 
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riser and production riser in heave free decay simulation. Fig. 6.6 and Fig. 6.8 show the 

dynamic top tension from pneumatic cylinder. Both dynamic top tension time series show 

identical phase as heave motion. These results clearly show that the dynamic forces on the 

spar platform have 180-degree phase difference and give additional heave restoring force 

on the spar platform. Fig. 6.7 and Fig. 6.9 show that the constant buoyant force from 

buoyancy-can. The free decay simulation results are summarized in Table 6.3. The surge, 

pitch, and heave damping ratios are calculated by averaging first seven peaks from free 

decay simulations. 

 

Table 6.3. Summary of free decay simulation. 

 SURGE HEAVE PITCH 
 CASE A CASE B CASE A CASE B CASE A CASE B
TN (sec) 257.2 257.2 20.9 27.8 45.5 45.5
ζ (%) 6.00 5.99 3.10 2.72 3.52 3.52
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Fig. 6.2. Surge free decay time series. 
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Fig. 6.3. Surge free decay spectrum. 
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Fig. 6.4. Heave free decay time series. 
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Fig. 6.5. Heave free decay spectrum. 
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Fig. 6.6. Drilling riser top tension time series (CASE A). 
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Fig. 6.7. Drilling riser top tension time series (CASE B). 
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Fig. 6.8. Production riser top tension time series (CASE A). 
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Fig. 6.9. Production riser top tension time series (CASE B). 
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Fig. 6.10. Pitch free decay time series. 
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Fig. 6.11. Pitch free decay spectrum. 
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6.4.2. 100-year Hurricane Simulation 

 

Fig. 6.12, Fig. 6.13, and Fig. 6.14 show the wave spectrum, wave time series, and 

wind velocity spectrum which are used in simulations. The 100-year hurricane simulation 

results are shown in Fig. 6.15 through Fig. 6.23. The results show that the Case A Spar and 

Case B Spar have almost identical surge and pitch responses. This means that the 

contribution from pneumatic cylinders is not significant in surge and pitch motions. 

However, the heave response of Case A Spar is much larger than that of Case B Spar. Table 

6.4 and Table 6.5 show that the Case A Spar and the Case B Spar have almost identical low 

frequency heave motion, but Case A Spar has 3.5 times larger wave frequency motion than 

Case B Spar platform. The larger wave frequency motion is caused by the additional heave 

restoring force from pneumatic cylinders that increases the heave natural frequency and 

therefore increases the heave wave frequency motion significantly. Due to the large wave 

frequency heave motion, the riser top tensions also show large standard deviation in Case 

A Spar platform. The summary of statistics, time series, and spectrum of riser top tension 

are shown in Table 6.6, Table 6.7 and Fig. 6.24 through Fig. 6.31. Comparison of top 

tension statistics of both cases show that the extreme top tension of production riser and 

drill riser of Case A Spar is slightly increased, but the standard deviation is increased 

significantly. The large standard deviation in axial tension may causes increased fatigue of 

riser system. The most loaded mooring line (i.e. M2 mooring in Fig. 6.1) top tension is 

shown in Fig. 6.32 through Fig. 6.34. Fig. 6.34 shows that Case A and Case B Spar have 

almost identical mooring top tension except for a small peak in heave natural period zone 

for Case A Spar. This means that the heave motion effect on the most loaded line is not 
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significant. A summary of the most loaded line statistic is shown in Table 6.8. Based on 

simulation results, the alternative riser support system results in larger heave motion as 

well as larger top tension on the riser compared with buoyancy-can riser support system. 

The pneumatic riser support system also increases the payload of a spar platform. Thus, 

buoyancy-can riser support system has better performance in spar hull motion and vertical 

riser system. 

 

Table 6.4. Summary of 100-year hurricane condition statistics (CASE A). 

CASE A 
 SURGE SWAY HEAVE ROLL PITCH YEW 
UNIT m m m deg. deg. deg. 
MEAN -2.23E+01 -4.17E+00 -3.43E-01 4.47E-01 -1.63E+00 -1.77E+00
STD 2.01E+00 1.16E+00 2.52E-01 3.49E-01 9.00E-01 2.60E-01
EXE -2.84E+01 -7.79E+00 -1.31E+00 1.49E+00 -5.48E+00 -2.85E+00
LF 1.91E+00  7.07E-02 8.24E-02 
WF 6.31E-01  2.42E-01 8.51E-02 
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 

 

Table 6.5. Summary of 100-year hurricane condition statistics (CASE B). 

CASE B 
 SURGE SWAY HEAVE ROLL PITCH YEW 
UNIT m m m deg. deg. deg. 
MEAN -2.22E+01 -4.16E+00 -2.39E-01 3.80E-01 -1.64E+00 2.26E+00
STD 2.02E+00 1.17E+00 1.02E-01 3.52E-01 9.04E-01 6.48E-01
EXE -2.84E+01 -7.80E+00 -7.09E-01 1.51E+00 -5.52E+00 4.18E+00
LF 1.91E+00  7.18E-02 8.35E-02  
WF 6.31E-01  6.96E-02 8.48E-02  
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 
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Fig. 6.12. 100-year hurricane wave spectrum. 
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Fig. 6.13. 100-year hurricane wave time series. 
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Fig. 6.14. 100-year hurricane wind velocity spectrum. 
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Fig. 6.15. Surge response time series (CASE A). 
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Fig. 6.16. Surge response time series (CASE B). 
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Fig. 6.17. Surge response spectrum.  
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Fig. 6.18. Heave response time series (CASE A). 
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Fig. 6.19. Heave response time series (CASE B). 
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Fig. 6.20. Heave response Spectrum. 
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Fig. 6.21. Pitch response time series (CASE A). 
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Fig. 6.22. Pitch response time series (CASE B). 
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Fig. 6.23. Pitch response spectrum. 
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Fig. 6.24. Drilling riser top tension time series (CASE A). 
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Fig. 6.25. Drilling riser top tension time series (CASE B). 
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Fig. 6.26. Drilling riser top tension spectrum (CASE A). 
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Fig. 6.27. Drilling riser top tension spectrum (CASE B). 

 

Table 6.6. Summary of drilling riser top tension statistics. 

 MEAN STD EXE LF STD WF STD
UNIT N N N N N 

CASE A 4.25E+06 2.75E+05 5.68E+06 3.52E+04 2.72E+05
CASE B 4.17E+06 1.72E+03 4.18E+06 1.35E+03 1.04E+03
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 
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Fig. 6.28. Production riser top tension time series (CASE A). 
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Fig. 6.29. Production riser top tension time series (CASE B). 
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Fig. 6.30. Production riser top tension spectrum with pneumatic cylinder (CASE A). 
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Fig. 6.31. Production riser top tension spectrum with buoyancy-can (CASE B). 

 

Table 6.7. Summary of drilling riser top tension statistics. 

 MEAN STD EXE LF STD WF STD 
UNIT N N N N N 
CASE A 2.27E+06 1.17E+05 2.68E+06 2.34E+04 1.14E+05
CASE B 2.35E+06 1.94E+03 2.36E+06 1.24E+03 1.41E+03
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 
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Fig. 6.32. Most loaded line top tension time series (CASE A). 
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Fig. 6.33. Most loaded line top tension time series (CASE B). 
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Fig. 6.34. Most loaded line top tension spectrum. 
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Table 6.8. Summary of most loaded line top tension statistics. 

 MEAN STD EXE LF WF 
UNIT N N N N N 
CASE A 4.96E+06 6.25E+05 7.90E+06 4.77E+05 4.03E+05
CASE B 4.96E+06 6.03E+05 7.62E+06 4.79E+05 3.67E+05
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 
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CHAPTER VII 

 

7. CASE STUDY 3: MATHIEU’S INSTABILITY 

 

7.1. Introduction 

 

In this chapter, Mathieu’s instability of a classical spar is investigated for a regular 

wave environment and the West Africa and North Sea swell conditions. Swell waves have 

been reported 25-second peak period swell waves offshore West Africa and North Sea. 

Generally, a spar platform has a 27~30-second heave natural period and a 45~60-second 

pitch natural period respectively. Due to heave and pitch motion characteristics of the spar 

platform, the spar heave natural period is near the peak period of swell waves and the pitch 

natural period twice the peak period of swell waves. As mentioned before, if there is no 

damping, the ratio between pitch natural frequency and heave motion frequency is near 0.5 

(α = 0.25) then the Mathieu’s instability occurs even β = 0, and as shown in Fig. 2.1 (i.e. 

principle unstable zone in Mathieu instability diagram), the first unstable zone, called as 

principle unstable zone, is not sensitive to damping compare with the secondary unstable 

zone. Due to these two reasons, the case studies are focused on the principle unstable zone.  

The objective of this case study is to evaluate damping effects and hull/mooring/riser 

coupled effects on the principle instability. Five different spar platforms are simulated with 

five different wave environments to capture the damping effects and hull/mooring/riser 

coupled effects in principle instability. The Mathieu instability of a spar platform is 

carefully checked by systematic comparison of each simulation results. 
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7.2. Description of the Spar Platform, Mooring System and Risers 

 

The dimension, mooring lines configuration and risers configuration of the spar 

platform used in this study is exactly same as Chapter V (i.e. case study 1: buoyancy-can 

effect on spar Platform) except the spar hull drag coefficient. The principle particulars of 

the spar platform and characteristics of mooring line and riser are summarized in Table 5.1 

through Table 5.4 in Chapter V. As mentioned in section 7.1, four different spar hull drag 

coefficients are used to capture the pitch damping effects on the Mathieu instability. Table 

7.1 summarizes the spar hull drag coefficient. 

 

Table 7.1. Drag coefficient of the spar platform. 

Designation CASE Quantities 
Drag coefficient 
(with mooring lines and risers) 

CASE D 
CASE E 

1.5

CASE A 0 (pitch damping 0.03%)
CASE B 0.5 (pitch damping 1.0%)

Drag coefficient 
(without mooring lines and risers)

CASE C 2.5 (pitch damping 3.0%)

 

7.3. Description of Case Study and Environmental Conditions 

 

As mentioned in section 7.1, the simulation conducted for five different spar 

platforms with three regular wave environments and two swell wave environments. It is 

well known that pitch damping of a spar platform is around 1% ~ 4% of the pitch critical 

damping and depends on the pitch motion amplitude. Thus, simulations are conducted in 

0.03% ~ 3.52% pitch damping ratio. The spar platforms used in the simulations are 
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summarized in Table 7.2. Table 7.3 summarizes the period and wave amplitude used in the 

regular wave simulation. In the regular wave simulation, the comparison can be divided 

into two categories. The first category is a comparison study for damping effects on 

Mathieu instability, and the second category is the comparison between no 

hull/mooring/riser coupling effects versus hull/mooring/riser effects on Mathieu instability. 

Because the mooring lines and risers are completely removed from Case A, Case B and 

Case C, the spar platform pitch damping ratios are artificially changed by using different 

drag coefficients for each spar platform. A zero drag coefficient is used in Case A, 0.5 drag 

coefficient is used in Case B, and 2.5 drag coefficient is used in Case C. Thus, Case A only 

considers radiation damping in the pitch direction. To simplify the comparison study, all 

the spar platforms use a heave plate with 1.5 drag coefficient. All mooring line and riser 

are considered in Case D and Case E Spar platform, and these cases use 1.5 drag 

coefficient for hull. The difference between the Case D and Case E Spar is the riser 

modeling. The Case D Spar uses a truncated riser and Case E uses fully modeled riser. 

Thus, buoyancy-can effect and Coulomb damping effects are considered in the Case E 

Spar platform. In the simulation, Case A, Case B and Case C Spar platforms are considered 

as a freely floating structure. Systematic comparisons between the five different spar 

platforms are used to show the damping effects and hull/mooring/riser coupled effects on 

Mathieu instability.  

The swell wave conditions are summarized in Table 7.4. To generate the swell wave 

time series, a JONSWP spectrum is used in the simulation with a 6.0 over shooting 

parameter. CASE E Spar platform is used in swell environment conditions and the Mathieu 

instability is checked based on regular wave simulation results. 
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Table 7.2. Summary of the spar platform used in case study. 

 Damping Ratio (%)
Pitch/heave Mooring Riser Coulomb Damping

CASE A 0.03 / 0.7 w/o w/o w/o 
CASE B 1.0 / 0.7 w/o w/o w/o 
CASE C 3.0 / 0.7 w/o w/o w/o 
CASE D 3.3 / 2.72 w w/t w/o 
CASE E 3.3 / 3.44 w w/f w 
Notes: 
w/o = without consideration; w = with consideration 
w/t = consider riser as truncating modeled; w/f = consider riser as fully modeled  

 

Table 7.3. Regular wave condition. 

 T (sec) Wave amp.(m) 
RW-A 26.0 6.00 ~7.00 
RW-B 27.8 1.50 ~ 7.00 
RW-C 22.7 7.00 

Notes: 
RW = regular wave; amp. = amplitude 

 

Table 7.4. Swell environment condition. 

 Hs (m) Tp (sec) γ 
Swell-A 2.5 23 6.0 
Swell-B 1.7 25 6.0 

 

7.4. Results and Analysis 

 

7.4.1. Free Decay Simulation 

 

To evaluate the heave and pitch damping ratio and natural period of the spar platform, 

free decay simulations are conducted. Fig. 7.1 and Fig. 7.2 show the pitch free decay 



 

 

152

simulation results for Case A, Case B, and Case C Spar platforms. To capture the different 

damping ratio, different drag coefficients are given for each spar hull. In Case A, the spar 

hull drag coefficient is 0.0 thus, only radiation damping is considered in this case. Case B 

and Case C use 0.5 and 2.5 drag coefficient to make the spar damping ratio as 1.0% and 

3.0% respectively. Fig. 7.3 and Fig. 7.4 show pitch free decay simulation results for with 

mooring line and riser. As mentioned before, Case D and Case E use the same drag 

coefficient but different riser modeling. The fully modeled riser (Case E) has a small pitch 

natural period and slightly larger damping ratio compared with truncated riser model. Table 

7.5 summarizes the pitch free decay simulation results. Fig. 7.5 and Fig. 7.6 show the 

heave free decay results for all cases. In the heave free decay simulations, one heave plate 

with a 1.5 drag coefficient is considered in all cases. In the Case E simulation, the spar 

platform initially tilted in pitch and roll directions, and it has additional damping from 

Coulomb friction. The results show that most of the heave damping in a classical spar 

platform comes from the mooring lines. Heave free decay simulation results are 

summarized in Table 7.6. From free decay simulation results, the heave natural period of 

the spar platform is half of the pitch natural period except for Case E, thus strong Mathieu 

instability is expected in the heave resonance zone. 

Based on this free decay test, pitch and heave damping effects on the principle 

unstable zone in the Mathieu instability are investigated in the following regular wave 

simulation.  

 



 

 

153

0 50 100 150 200 250 300 350 400 450 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
PITCH MOTION TIME SERIES

time (sec)

m
ot

io
n 

(ra
d)

CASE A (Cd = 0.0)
CASE B (Cd = 0.5)
CASE C (Cd = 2.5)

 

Fig. 7.1. Pitch free decay simulation time series (CASE A, CASE B, and CASE C). 
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Fig. 7.2. Pitch free decay simulation spectrum (CASE A, CASE B, and CASE C). 
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Fig. 7.3. Pitch free decay simulation time series (CASE D and CASE E). 
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Fig. 7.4. Pitch free decay simulation spectrum (CASE D and CASE E). 

 

Table 7.5. Pitch motion natural periods and damping ratios.  

 CASE A CASE B CASE C CASE D CASE E 
TN (sec) 57.6 57.6 57.6 57.6 45.5
ς (%) 0.03 1.01 2.99 3.28 3.52
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Fig. 7.5. Heave free decay time series. 
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Fig. 7.6. Heave free decay spectrum. 

 

Table 7.6. Heave motion natural periods and damping ratio. 

 CASE A CASE B CASE C CASE D CASE E 
TN (sec) 27.8 27.8 27.8 27.8 27.8
ς (%) 0.77 0.77 0.77 2.72 3.44
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7.4.2. Mathieu’s Instability in Regular Waves 

 

The results of regular wave simulation A (RW-A) are shown in Table 7.7, Table 7.8, 

and Fig. 7.7 through Fig. 7.13. To capture the Mathieu instability, simulations are 

conducted with varying wave amplitudes. In 6.0-meter regular wave amplitude simulation, 

the Mathieu instability is triggered in Case A and Case B Spar. Fig. 7.7 shows the result 

from the Case A Spar platform. Fig. 7.7 clearly pitch motion drastically increased after 

2000 seconds. The pitch response spectrum, Fig. 7.7, shows the largest peak exist in pitch 

natural period zone even in the 26.0 seconds long period wave environment. Table 7.7 

summarizes the statistical results from the simulation. The comparison between Case A and 

Case B statistical results, in Table 7.7, show that the 1% pitch damping ratio is not enough 

to suppress the Mathieu instability. Thus, when the heave motion is larger than 8.0 meter 

the Mathieu instability is triggered in Case A and Case B Spar platform. However, 8.0 

meter heave motion is not enough to trigger the Mathieu instability in Case C Spar. On the 

other hand, Fig. 7.9 shows spar heave and pitch motion without time varying pitch 

hydrostatic coefficient (i.e. constant pitch hydrostatic restoring coefficient), and this result 

shows that constant pitch hydrostatic restoring coefficient can not analyze the Mathieu 

instability and significantly underestimate the pitch motion of the spar platform. To clarify 

Mathieu instability, the detailed time series are shown in Fig. 7.8. The pitch motion time 

series shows that the pitch motion is stable up to 1000 seconds. The pitch time series in 

show that the pitch motion has same period as regular wave period (i.e. 26 second) in first 

1000 seconds, but after 1000 seconds the pitch motion is disturbed. The reason is that the 

large heave motion changes the pitch restoring moment. Fig. 7.8 shows that the pitch 
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motion gradually increases by the superposition of two adjacent motion peaks and, it 

doubles the amplitude of pitch motion as well as period. After two pitch motion peaks are 

superposed, the pitch motion drastically increased because motion becomes the pitch 

natural period motion. When pitch motion is increased by Mathieu instability, the large 

pitch motion also disturbs the heave motion. Fig. 7.7 shows disturbed heave motion. Fig. 

7.10 shows pitch response time series for Case B Spar platform. It is interesting to notice 

that Case B Spar has Mathieu instability in pitch motion, but the tendency of pitch motions 

are different from Case A Spar platform. The reason is because of the damping effect on 

pitch motion. As mentioned before, the Case B and Case C Spar platform have 1% and 3% 

damping ratio in pitch motion. When Mathieu instability occurs in Case B Spar platform, a 

1% pitch damping maintains the pitch motion as stable rather than unstable. The results for 

Case D and Case E Spar platform are shown in Fig. 7.12 and Fig. 7.13 and summarized in 

Table 7.8. Due to Case D and Case E Spar platform include the mooring lines and risers, a 

larger wave amplitude is used in the simulation. Fig. 7.12 shows that the damping from 

mooring lines and risers, and the result form Case D Spar has the same tendency as Case C 

simulation. The Case C and Case D Spar have small disturbance in pitch motion. (i.e. 3000 

sec – 6000 sec), but the pitch motion of the Case E Spar does not have disturbance in pitch 

motion. The reason is that the Case D Spar uses truncated riser model, thus the additional 

pitch restoring force from buoyancy-cans is not considered, but Case E Spar consider 

buoyancy-can effects. The buoyancy-can effects on the Mathieu instability are clearly 

shown in the following RW-B simulation. 
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Table 7.7. Comparison of the statistics (Regular wave simulation A). 

RW A: T = 26 sec amp. = 6.0 m 
 CASEA CASE B CASE C 
 HEAVE PITCH HEAVE PITCH HEAVE PITCH 
UNIT m deg.  m deg.  m deg.  
MEAN 7.03E-02 -5.94E-02 7.65E-02 -6.08E-02 7.92E-02 -6.55E-02
STD 5.05E+00 5.63E+00 5.49E+00 5.39E+00 5.61E+00 1.20E+00
EXE 8.23E+00 1.80E+01 8.23E+00 1.18E+01 8.23E+00 1.85E+00
Notes: 
STD = standard deviation; EXE = extreme 

 

 

Table 7.8. Comparison of the statistics (Regular wave simulation A). 

RW A: T = 26 sec, amp. = 7.0 m 
 CASE D CASE E 
 HEAVE PITCH HEAVE PITCH 
UNIT m deg.  m deg.  
MEAN 4.31E-02 -1.68E-01 -2.55E-02 -1.80E-01
STD 5.68E+00 1.43E+00 5.58E+00 1.65E+00
EXE 8.06E+00 -2.21E+00 7.94E+00 -2.51E+00
Notes: 
STD = standard deviation; EXE = extreme 
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Fig. 7.7. Spar heave and pitch motions (CASE A: Tp = 26 sec, amp. = 6.0 m). 
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Fig. 7.8. Heave/Pitch response time series (1000 sec – 4000 sec). 
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Fig. 7.9. Spar heave and pitch motions without time varying pitch hydrostatic 

restoring coefficient (CASE A: Tp = 26 sec, amp. = 6.0 m). 
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Fig. 7.10. Spar heave and pitch motions (CASE B: Tp = 26 sec, amp. = 6.0 m). 

 



 

 

163

 

 

0 1000 2000 3000 4000 5000 6000 7000
-10

-5

0

5

10
HEAVE MOTION TIME SERIES

time (sec)

m
ot

io
n 

(m
)

CASE C

 

0 1000 2000 3000 4000 5000 6000 7000
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
PITCH MOTION TIME SERIES

time (sec)

m
ot

io
n 

(ra
d)

CASE C

 

0 0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800

1000
HEAVE MOTION SPECTRUM

frequency (rad/s)he
av

e 
re

sp
on

se
 s

pe
ct

ru
m

 (m
2 -s

ec
)

CASE C

 

0 0.2 0.4 0.6 0.8 1 1.2
0

0.005

0.01

0.015
PITCH MOTION SPECTRUM

frequency (rad/s)pi
tc

h 
re

sp
on

se
 s

pe
ct

ru
m

 (r
ad

2 -s
ec

)

CASE C

 

Fig. 7.11. Spar heave and pitch motions (CASE C: Tp = 26 sec, amp. = 6.0 m). 
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Fig. 7.12. Spar heave and pitch motions (CASE D: Tp = 26 sec, amp. = 7.0 m). 
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Fig. 7.13. Spar heave and pitch motions (CASE E: Tp = 26 sec, amp. = 7.0 m). 
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To confirm the spar platform stability, the heave resonance zone is investigated in the 

RW-B simulation. As mentioned before, RW-B uses a 27.8 second wave period and this 

wave period is exactly same as the heave natural period as well as half of pitch natural 

period. The simulation results are shown in Fig. 7.14 through Fig. 7.19 and summarized in 

Table 7.9 and Table 7.10. In the simulation, the result from Case A Spar platform is not 

available due to the absence of damping from the drag force. The reason is that the Case A 

Spar platform is unrealistically modeled. When Mathieu instability is triggered in the Case 

A Spar platform the pitch motion is unrealistically large in small wave amplitudes due to 

the large heave resonance motion and almost zero pitch damping. Thus, in the RW-B 

simulation, the Case A Spar is not considered. The Case B simulation results are shown in 

Fig. 7.14. The results show that for heave motion larger than 8.0 meter the Case B Spar has 

Mathieu instability. This means that 1% pitch damping ratio is not enough to suppress the 

Mathieu instability. The CASE C Spar simulation results are shown in Fig. 7.15. The 

results show that the Case C Spar also has Mathieu instability when heave motion is larger 

than 8.0 meter. It is interesting to notice that, in RW-A case, the Case C Spar does not have 

Mathieu instability, but, in RW-B case, the Case C Spar has Mathieu instability. The reason 

is that, in RW-B case, the α factor is 0.25 where the most severe Mathieu instability occurs. 

The Case C Spar in the 2.0 wave amplitudes is shown in Fig. 7.16. The results shows same 

tendency as RW-A Case B simulation results. This means that 3% pitch damping ratio can 

keep the pitch resonance motion stable even when the Mathieu instability is triggered. 

The simulation results for the Case D and Case E Spar platforms are shown in Fig. 

7.17 through Fig. 7.20. The Case D Spar results show Mathieu instability due to large 

heave motion and 0.25 alpha factors. However, the detailed time series for pitch motion 
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shows that Mathieu instability occurs after 2000 seconds, but, due to pitch damping effect, 

the superposition of two adjacent peaks cannot be fully developed as the pitch natural 

period of motion. It clearly shows that pitch damping dampened the pitch resonance from 

Mathieu instability. The Mathieu instability is not triggered in the Case E Spar even with a 

11.3 meter heave motion. The reason is that additional restoring moment from buoyancy-

can effect changes the pitch natural period of motion and it avoids the critical α factor (i.e. 

0.25) and also the additional restoring moment compensates for the heave motion 

disturbance in the pitch restoring moment. Fig. 7.19 clearly shows that the pitch motion of 

the Case E Spar platform only has wave frequency motion. This result clearly shows the 

buoyancy-can effects on Mathieu instability. It shows that in the same heave motion Case 

D has Mathieu instability but Case E does not have Mathieu instability. To ensure stability 

of CASE E Spar, a 22.7 second regular wave simulation is conducted. In the 22.7 second 

wave period, Case E Spar has 0.25 α factor. However, the results show that heave motion 

of the Case E Spar is not large even when a 7 meter wave amplitude is used.  

The RW-A and RW-B simulation results show that buoyancy-can effects play very 

important role in Mathieu instability analysis for the spar platform. Thus, without proper 

modeling of risers and mooring lines in the simulation and experiment may lead to 

incorrect results under certain condition. The wave amplitudes and periods used in the 

simulation are not practical but only academic, still it is worthwhile to capture the Mathieu 

instability of a spar platform and to see the Mathieu instability mechanism is due to heave 

pitch coupling. Based on the regular wave simulation results, in the following section, 

Mathieu instability in a spar platform is checked for a Swell environment  

 



 

 

168

Table 7.9. Comparison of statistics (Regular wave simulation B). 

 RW B: T = 27.8 sec, amp. = 1.5 amp. = 2.0 
 CASE B CASEC CASE C 
 HEAVE PITCH HEAVE PITCH HEAVE PITCH
UNIT m deg.  m deg.  m deg. 
MEAN 7.40E-03 -2.11E-02 6.84E-03 -2.14E-02 1.24E-03 -2.65E-02
STD 4.82E+00 3.02E+00 4.82E+00 5.37E-01 6.11E+00 1.93E+00
EXE -8.07E+00 -7.17E+00-8.07E+00-1.58E+009.83E+00 3.47E+00
Notes: 
STD = standard deviation; EXE = extreme 

 

Table 7.10. Comparison of statistics (Regular wave simulation B and C). 

RW B: T = 27.8 sec, amp. = 7.0 T = 22.7 
 CASE D CASE E CASE E 
 HEAVE PITCH HEAVE PITCH HEAVE PITCH
UNIT m deg.  m deg.  m deg.  
MEAN -2.55E-02 -3.20E-01 -1.52E-02 -3.28E-01 1.05E-01 -7.83E-02
STD 8.12E+00 2.87E+00 7.96E+00 2.01E+00 1.59E+00 1.58E+00
EXE 1.15E+01 -6.36E+00 1.13E+01 -3.15E+00 2.38E+00 -2.31E+00
Notes: 
STD = standard deviation; EXE = extreme 
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Fig. 7.14. Spar heave and pitch motions (CASE B: Tp = 27.8 sec, amp. = 1.5 m). 
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Fig. 7.15. Spar heave and pitch motions (CASE C: Tp = 27.8 sec, amp. = 1.5 m). 
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Fig. 7.16. Spar heave and pitch motions (CASE C: Tp = 27.8 sec, amp. = 2.0 m). 
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Fig. 7.17. Spar heave and pitch motions (CASE D: Tp = 27.8 sec, amp. = 7.0 m). 
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CASE A: T = 27.8 sec, amp. = 7.0 m 
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Fig. 7.18. Heave/Pitch response time series (1000 sec – 5000 sec). 
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Fig. 7.19. Spar heave and pitch motions (CASE E: Tp = 27.8 sec, amp. = 7.0 m). 
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Fig. 7.20. Spar heave and pitch motions (CASE E: Tp = 22.7 sec, amp. = 7.0 m). 
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7.4.3. Mathieu Instability in Swell Condition 

 

Fig. 7.21 through Fig. 7.24 show the Swell wave spectrum and times series which are 

used in the simulation. The Swell-A and Swell- B simulation results are shown in Fig. 7.25 

through Fig. 7.36 and summarized in Table 7.11 and Table 7.12. Based on the regular wave 

simulation (RW-A and RW-B), Mathieu instability is not triggered in CASE E Spar even in 

large heave motion. The Swell-A and Swell-B simulation results show that the maximum 

heave motion is around 1.7 ~ 1.9 meter and maximum pitch motion is around 0.6 ~ 0.7 

degree. The ranges of heave and pitch motion in the regular wave simulation results show 

that the spar platform is very stable. It shows that the spar platform does not have Mathieu 

instability in the swell wave environment. However, the heave motion standard deviation 

in the swell condition is five times larger than in 100-year hurricane condition. 
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Fig. 7.21. Wave spectrum for Swell – A. 
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Fig. 7.22. Wave time series for Swell – A. 
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Fig. 7.23. Wave spectrum for Swell – B. 
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Fig. 7.24. Wave time series for Swell – B. 
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Fig. 7.25. Surge response time series (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 7.26. Surge response spectrum (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 7.27. Heave response time series (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 7.28. Heave response spectrum (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 7.29. Pitch response time series (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 7.30. Pitch response spectrum (Hs = 2.5 m, Tp =23 sec, γ =6.0). 
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Fig. 7.31. Surge response time series (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Fig. 7.32. Surge response spectrum (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Fig. 7.33. Heave response time series (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Fig. 7.34. Heave response spectrum (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Fig. 7.35. Pitch response time series (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Fig. 7.36. Pitch response spectrum (Hs = 1.7 m, Tp =25 sec, γ =6.0). 
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Table 7.11. Summary of swell condition A statistics.  

SWELL CONDITION A 
 SURGE (m) HEAVE (m) PITCH (deg) 
MEAN  -9.71E-04 -2.63E-03 -5.35E-01
STD 2.99E-01 6.30E-01 1.97E-01
EXE -1.06E+00 -1.68E+00 -6.81E-01
LF STD 6.65E-02 5.31E-02 5.33E-03
WF STD 2.87E-01 5.91E-01 2.51E-02
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 

 

Table 7.12. Summary of swell condition B statistics. 

SWELL CONDITION B 
 SURGE (m) HEAVE (m) PITCH (deg) 
MEAN -1.01E-02 -3.37E-03 -5.32E-02
STD 2.30E-01 7.55E-01 1.49E-01
EXE 7.86E-01 -1.84E+00 -5.61E-01
LF STD 5.88E-02 6.22E-02 6.02E-03
WF STD 2.18E-01 7.25E-01 1.82E-02
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency; WF = wave frequency 
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CHAPTER VIII 

 

8. CASE STUDY 4: LOOP CURRENT SIMULATION 

 

8.1. Introduction 

 

In this chapter, the dynamic behavior of a spar platform in loop current environment is 

investigated. The clockwise flow that extends northward into the Gulf of Mexico and joins 

the Yucatan Current and the Florida Current is known as the Loop Current (Hofmann and 

Worley, 1986). Fig. 8.1 shows loop current for the Gulf of the Mexcio. Due to strong 

current and deep draft of a spar platform, the loop current can generate vortex-induced 

vibration for a classical spar platform. The pressure difference around a bluff body in 

current may experience flow separation. Due to velocity difference between the outermost 

boundary layers and innermost boundary layer, and if the velocity of flow is large enough, 

this causes the boundary layers to roll into the near wake and form periodic vortices. The 

interaction of the structure with these vortices causes it to vibrate transverse to the flow 

direction, and this phenomenon is called as vortex-induced vibration. The frequency of 

vortex shedding can be found from the Strouhal number that is a function of Reynolds 

number and body geometry. The spar Reynolds number is in the range of 107 in 1~2m/s 

current velocity. In this Reynolds number range, the Strouhal number is around 0.21 ~ 0.23 

for circular cylinders (Lienhard, 1966). However, as noted by Roshko (1961), the Strouhal 

number for the circular cylinders appears to be proportional to the inverse of the drag 

coefficient. For Reynolds numbers between 102 and 107, but excluding the transitional 
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regime 610≅R , the Strouhal number is approximated closely by DCS /23.0= . Based on 

this approximated formulation, the Strouhal number can be 0.153 when CD is 1.5. As 

mentioned before, the vortex-induced vibration is modeled as lift a force on a spar hull. 

Thus, in the case study, simulations are conducted for 0.4 lift coefficients with 0.153 and 

0.23 Strouhal numbers.  

The dimension, mooring lines configuration, and risers configuration of the spar 

platform used in this study is exactly same as Chapter V (i.e. case study 1: buoyancy-can 

effect on spar Platform) except the riser support system. The principle particulars of the 

spar platform and characteristics of mooring line and riser are summarized in Table 5.1 

through Table 5.4 in Chapter V. 

 

 

Fig. 8.1. Loop current for the Gulf of Mexico (Gyory et al., 2001). 
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8.2. Description of Case study and Design Environmental Conditions 

 

As mentioned before, three simulations are conducted in the case study. The 

difference among the three spar platforms is the lift coefficient. The Case A Spar platform 

uses zero lift coefficient, thus Case A Spar ignores the vortex-induced vibration effects. 

Case B and Case C Spar platforms use a 0.4 lift coefficient. As mentioned before, the 

simulations are conducted at 0.153 and 0.23 Strouhal numbers. 

In the loop current simulations, the current is assumed to be steady and the irregular 

wave is unidirectional. The wave heading is 180 degrees with respect to global axis. A 

JONSWAP spectrum of significant wave height, 1.6=sH meter, peak period 

87.8=pT sec, and overshoot parameter 0.2=γ was selected to represent a typical loop 

current condition in the Gulf of Mexico. The current flows from 90 degree right of wave 

direction. This environmental direction causes the most severe vortex-induced vibration of 

the spar surge motion. The current velocity is assumed to be 2.13 m/sec from mean water 

level to 91.44 m water depths and is reduced to 0.91 m/sec at 243.84 m (300 ft) and zero at 

914.4 m. The wind speed used is 22.35 m/sec at 10m above mean water level and wind 

direction is collinear to wave direction. The API wind spectrum is used for the generation 

of time varying wind forces. Fig. 8.2 and Fig. 8.3 show environment direction of the loop 

current condition and loop current profile, respectively. The time step used in simulation is 

0.05 seconds and the total simulation time is 3 hours (216000 time steps).  
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Fig. 8.2. Environmental direction of loop current condition. 
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Fig. 8.3. Loop current and 100-yr hurricane current profile. 
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8.3. Results and Analysis 

 

In the simulation, the loop current comes from 90 degree with respect to global axis, 

thus vortex-induced vibration effects are in the surge and pitch motion of the spar platform. 

Fig. 8.4 through Fig. 8.6 show the wind velocity spectrum, wave spectrum, and wave time 

series used in the simulations. The input wave spectrum is truncated at 0.2 (rad/sec) 

< ω<1.2 (rad/sec) in this study, and wind spectrum is truncated at 2 (rad/sec). 

The simulated surge motion results are shown in Fig. 8.7 through Fig. 8.10. 

Comparisons of simulated surge time series clearly show the vortex-induced vibration 

effects in Case B and Case C Spar platforms. Comparison of the surge spectrum in Fig. 

8.10 shows that the peak induced by vortex-induced vibration for Case B is in the range of 

57 second through 125 seconds (peak period = 69 seconds) and 56 second through 251 

seconds (peak period = 125 seconds) for Case C. The most severe vortex induced vibration 

event, called as synchronized or lock-in, occurs in the range of 0.9 ~ 1.2 times of the 

structure natural frequency. Case C simulation results show lock-in situation clearly. 

Strouhal frequencies of both cases (Case B and Case C) include the pitch natural periods, 

thus the large vortex-induced vibration effects on pitch motion are expected.  
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Fig. 8.4. Loop current condition wind velocity spectrum. 
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Fig. 8.5. Loop current condition wave spectrum. 
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Fig. 8.6. Loop current condition wave time series. 
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Fig. 8.7. Surge response time series (CASE A, CL = 0.0). 
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Fig. 8.8. Surge response time series (CASE B, St = 0.23, CL = 0.4). 
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Fig. 8.9. Surge response time series (CASE C, St = 0.153, CL = 0.4). 
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Fig. 8.10. Comparison of surge response spectrum (  shows the peak from 

experiment). 

 

Fig. 8.11 through Fig. 8.14 show the simulated heave motion results. Due to the large 

surge motion, heave is also affected by vortex-induced vibration. The set up and set down 

effects from the surge motion are clearly shown in the heave motion spectrum. Due to 

large surge motion in Case C, the heave motion is also larger in Case C compared to Case 

B.  
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Fig. 8.11. Heave response time series (CASE A, CL = 0.0). 
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Fig. 8.12. Heave response time series (CASE B, St = 0.23, CL = 0.4). 
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Fig. 8.13. Heave response time series (CASE C, St = 0.153, CL = 0.4). 
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Fig. 8.14. Comparison of heave response spectrum. 

 

Fig. 8.15 through Fig. 8.18 show the simulated pitch motion results. Due to the 

change in current velocity with depth, the lift force frequency are changed with depth in 

the simulation and these factor generate additional exciting moment for the spar pitch 

motion. As mentioned before, the Strouhal frequencies of both (Case B and Case C) 

simulations near the pitch natural period (i.e. 45.5 seconds). Due to additional exciting 

moment and Strouhal frequency, pitch motion is also increased significantly.  
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Fig. 8.15. Pitch response time series (CASE A, CL = 0.0). 

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0 .04

-0 .03

-0 .02

-0 .01

0

0 .01

0 .02

0 .03
P IT C H  M O T IO N  T IM E S ER IES

tim e  (se c )

m
ot

io
n 

(ra
d)

 

Fig. 8.16. Pitch response time series (CASE B, St = 0.23, CL = 0.4). 
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Fig. 8.17. Pitch response time series (CASE C, St = 0.153, CL = 0.4). 
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Fig. 8.18. Comparison of Pitch response spectrum. 

 

The statistical results are summarized in Table 8.1 through Table 8.3. Comparisons of 

statistics show that the surge standard deviation in Case B and Case C Spar is two times 

and four times larger than that of Case A, respectively. In pitch motion, Case B and Case C 

Spar is 1.7 and 1.4 times larger standard deviation compared with CASE A. Due to larger 

surge and pitch motion, the heave motion standard deviations is also increased by factor of 

1.5 and 2.6 in Case B and Case C compared with Case A. Because vortex-induced 

vibration effects are considered as a harmonic lift force on a spar hull the spar motion (i.e. 

6 degree of freedom of motions) mean values of Case A, Case B, and Case C is almost 

identical. 
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Table 8.1. Summary of loop current condition statistics (CASE A). 

CASE A (CL = 0.0) 
 SURGE  SWAY HEAVE ROLL PITCH  YEW 

UNIT  m m m deg. deg. deg. 
MEAN -3.22E+00 3.67E+01 -1.12E+00 -6.13E-01 -5.02E-01 9.32E-01
STD 5.44E-01 3.80E-02 1.01E-02 1.55E-02 2.66E-01 1.40E-01
EXE -5.16E+00 3.68E+01 -1.17E+00 -6.80E-01 -1.43E+00 1.46E+00
LF STD 5.33E-01 6.68E-03 2.86E-02 
WF STD 1.08E-01 7.18E-03 2.02E-02 
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency, WF = wave frequency 

 

Table 8.2. Summary of loop current condition statistics (CASE B). 

CASE B (St = 0.23, CL = 0.4) 
 SURGE  SWAY HEAVE ROLL PITCH  YEW 
UNIT  m m m deg. deg. deg. 
MEAN -3.22E+00 3.67E+01 -1.13E+00 -6.11E-01 -5.01E-01 9.30E-01
STD 1.07E+00 4.87E-02 1.52E-02 1.59E-02 4.40E-01 1.93E-01
EXE -6.38E+00 3.68E+01 1.18E+00 6.77E-01 1.84E+00 1.48E+00
LF STD 1.07E+00  1.33E-02 5.43E-02  
WF STD 1.10E-01  7.05E-03 2.02E-02  
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency, WF = wave frequency 

 

Table 8.3. Summary of loop current condition statistics (CASE C). 

CASE C (St = 0.153, CL = 0.4) 
UNIT SURGE SWAY HEAVE ROLL PITCH YEW 
 m m m deg. deg. deg. 
MEAN -3.19E+00 3.67E+01 -1.13E+00 -6.11E-01 -5.02E-01 9.30E-01
STD 2.30E+00 1.42E-01 2.62E-02 1.66E-02 3.82E-01 3.47E-01
EXE -8.13E+00 3.69E+01 -1.22E+00 -6.86E-01 -1.82E+00 1.83E+00
LF STD 2.31E+00  2.51E-02 4.61E-02  
WF STD 1.12E-01  7.08E-03 2.02E-02  
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency, WF = wave frequency 
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Fig. 8.19 through Fig. 8.22 show a simulated most loaded mooring line tension time 

series and spectrum. It is obvious that large surge, heave and pitch motion standard 

deviations in Case B and Case C Spar platform both spar platforms also have larger 

standard deviation in mooring line tension compared with Case A Spar platform. Table 8.4 

shows that standard deviation of mooring line tension increased by 20% and 102% in Case 

B and Case C Spar platform compared with Case A Spar platform respectively. 

This case study has some limitations with current modeling as well as evaluating the 

vortex-shedding force. As mentioned before, the current is modeled as unidirectional with 

steady velocity and the vortex-shedding force is modeled as harmonic lift force in the 

numerical analysis program. However, the results show that neglecting vortex-induced 

vibration effects on a spar platform lead to significantly underestimating results in motion 

as well as mooring line tension in loop current condition. 

 

Table 8.4. Summary of statistics of most loaded line top tension statistics. 

 MEAN STD EXE LF STD WF STD
UNIT N N N N N 
CASE A 3.16E+06 5.42E+04 3.36E+06 2.77E+04 4.49E+04
CASE B 3.16E+06 6.52E+04 3.42E+06 4.56E+04 4.50E+04
CASE C 3.16E+06 1.10E+05 3.56E+06 1.00E+05 4.55E+04
Notes: 
STD = standard deviation; EXE = extreme; LF = low frequency, WF = wave frequency 
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Fig. 8.19. Mooring top tension time series (CASE A, CL = 0.0). 
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Fig. 8.20. Mooring top tension time series (CASE B, St = 0.23, CL = 0.4). 
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Fig. 8.21. Mooring top tension time series (CASE C, St = 0.153, CL = 0.4). 
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Fig. 8.22. Comparison of top tension spectrum. 

 

In the case study only considers loop current condition, but it has been reported that 

vortex-induced vibration with hurricane environment by Anam (2000). In his dissertation, 

the vortex-induced vibration event of the Neptune Spar with Hurricane George was studied. 

The field data show the vortex-induced vibration event following Hurricane George (early 

hours of September). Due to Hurricane is subsided, the environmental conditions were not 

severe (i.e. wave = 2 m, current = 0.45 m/s, and wind = 11.1 m/s) enough to make the spar 

dynamic motion and static offset, but the Neptune Spar experienced significant vortex-

induced vibration event. The reason is that corresponding current velocity creates lock-in 

situation for the horizontal motion of the spar (Anam, 2000). His study also shows the 

vortex-induced vibration of the spar platform in strong wind, wave, and current from 

different direction. Thus, the vortex-induced vibration is important not only in loop current 

condition but also in hurricane condition. The vortex-induced vibration problem in 

offshore structure is still in progress, thus more research in this area is required. 
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CHAPTER IX 

 

9. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

9.1. Dynamics of a Spar Platform with Buoyancy-Can  

 

The coupled dynamics of a classical spar designed for 914 m (3000 ft) water depth is 

investigated in the time domain using the analysis software WINPOST, that includes the 

newly developed numerical scheme for modeling the effects of the riser buoyancy-can. The 

buoyancy-cans inside of spar moon-pool are ignored or simplified in previous studies. Due 

to the fact that riser effects (i.e. buoyancy-can effects) are neglected, the spar heave and 

pitch motions are over estimated in simulations as well as in experiments. However, this 

study models the buoyancy-can effects by using multiple contact coupling and gap-contact 

between the riser buoyancy-can and guide frames by using one linear connected spring and 

three different nonlinear gap-contact springs.  

Numerical simulations are conducted for the 100-yr hurricane condition with non-

parallel wind, wave, and current. The coupling effects of riser buoyancy-cans and support 

guide frames on the global spar motions are determined using various riser buoyancy-can 

modeling techniques for evaluating multiple contact effects inside of the spar moon-pool. 

Conclusions are as follows: 

 

• The results show that both predicted pitch and roll motions are reduced 

significantly when the effects of contact forces on the support guide frames 
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are considered.  

• The multi-contact coupling forces between the riser buoyancy-cans and riser 

guide frames do not change the spar surge motion nor the most loaded line 

tension. 

• The results from the gap contact effect between the riser buoyancy-cans and 

riser guide frames show that the gap effect does not change the global spar 

motion.  

• The surge free decay simulation results show that the gap effect causes a 

periodic impact-like force on the buoyancy-can and this periodic force may 

produce fatigue in the buoyancy-can. 

• The Coulomb (friction) damping between the riser buoyancy-cans and riser 

guide frames reduces the spar heave motion significantly in the spar heave 

natural period region. 

• The heave free decay simulation clearly shows the Coulomb (friction) 

damping causes the heave amplitude to decay linearly, but it does not alter the 

natural period of the system. 

• The new fully coupled analysis software that includes riser buoyancy-can 

effects inside of the spar moon-pool developed in this dissertation better 

predicts the spar motions. 
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9.2. Dynamics of a Spar Platform with Pneumatic Riser Support System 

 

An alternative spar riser support system is called that pneumatic riser support system. 

The pneumatic riser support system is compared with the buoyancy-can riser support 

system in the free decay test as well as the 100-year hurricane conditions of Gulf of 

Mexico.  

The free decay simulation results show that pneumatic cylinders do not change the 

surge and pitch motion significantly, but the heave motion is totally different because there 

is additional heave restoring force from pneumatic cylinders. Due to the additional 

restoring force from pneumatic cylinders, the heave natural frequency of the spar platform 

is increased. The 100-year hurricane simulation results show that the pneumatic riser 

support system produces larger heave motion. The reason is that the pneumatic riser 

support system increases the spar natural period in heave direction, and thus the spar 

platform more exposed to wave energy. The pneumatic riser support system increases the 

riser top tension compared with the buoyancy-can riser support system. Because risers are 

hanging off the spar platform with the pneumatic cylinder, the pneumatic riser support 

system also increases the spar platform payload. Thus, the buoyancy-can riser support 

system produces smaller spar hull motions, and there is less top tension in the vertical riser 

system. 
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9.3. Mathieu’s Instability in Spar Platform 

 

Due to heave and pitch coupling of the spar platform, the pitch restoring coefficient is 

a function of heave motion, and this can be expressed by the Mathieu instability equation. 

When the spar experiences the Mathieu instability, the spar experiences large pitch motions. 

Thus, the Mathieu instability of a classical spar platform is investigated for various types 

of spar hull modeling. A damped Mathieu stability diagram is also developed.  

First, the classical spar is modeled in a regular wave environment without considering 

the effects of the mooring lines and risers. The drag coefficient of the spar hull is changed 

to determine the pitch damping effects on Mathieu instability. The simulation results 

clearly show the Mathieu instability mechanism as well as the pitch damping effects on the 

Mathieu instability. The Mathieu stability diagram also shows that increasing pitch 

damping suppresses the Mathieu instability problem.  

Second, the spar is modeled in regular waves, and the mooring lines and risers are 

considered. The results show that mooring line and riser buoyancy-can effects play an 

important role in the Mathieu instability analysis of a spar platform. Thus, the possibility of 

Mathieu instability is expected to be overestimated without proper modeling of riser 

buoyancy-cans and mooring lines in the computer simulations and in the model basin 

experiments. 

Additional simulations are conducted for West Africa and North Sea swell 

environment conditions. The Swell-A and Swell-B simulation results show that for both 

cases the maximum heave motion is 1.7 ~ 1.9 meters (5.5 ~ 6.2 ft) and the maximum pitch 

motion is around 0.6 ~ 0.7 degrees. Based on the regular wave simulation results, the spar 
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platform is very stable in this range of heave and pitch response. It shows that the spar 

platform does not experience Mathieu instability in the typical swell environment 

condition. However, the heave motion standard deviation in the swell condition is five 

times larger than that for the 100-year hurricane condition. Thus, to reduce the Mathieu 

instability problem in a spar hull design, one may reduce the pitch natural period below 45 

seconds. Increasing a spar heave natural period higher than 30 seconds also avoids the 

dominant swell wave energy as well as reduces the possibility of Mathieu instability in 

swell environment. 

 

9.4. Vortex Induced Vibration on Spar Hull  

 

The loop current condition in Gulf of Mexico is simulated for a classical spar 

platform. In this case study, the simplified vortex-induced vibration effects are added in the 

WINPOST computer simulation for the analysis. There are some limitations with current 

modeling as well as evaluating the vortex-shedding force. As mentioned before, the current 

is modeled as unidirectional with steady velocity and the vortex-shedding force is modeled 

as a harmonic lift force. The results show that neglecting vortex-induced vibration effects 

on a spar platform yield significantly underestimated results in surge or sway motion (i.e. 

100 % in the Case B and 322% in the Case C) and mooring line tension. 
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9.5. Recommendations and Future Studies 

 

Four main subjects are studied in this research; Buoyancy-can effect on the global 

spar motion, Alternative pneumatic riser support system, Mathieu instability in a spar 

platform, and vortex-induced vibration in a spar platform. The recommendations and 

future studies are as follows; 

 

Buoyancy-can effects on the global spar motion 

 

• The multi-contact coupling numerical model including gap boundary 

condition is developed. However, the spring coefficient and friction coefficient 

between buoyancy-can and riser guide frames need to be further validated 

using structural experiment.  

• The hydrodynamic coefficients (i.e. inertia, drag, and added mass coefficients) 

of the buoyancy-can inside of the spar moon-pool need be further validated 

with model basin experiment. 

• In this research, the additional excitation force from sloshing inside of the spar 

moon-pool was not considered. More theoretical and experimental work is 

needed to consider the additional excitation force from sloshing. 

 

Mathieu instability 

 

• The proper modeling of mooring lines, riser buoyancy-cans and spar moon-
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pool is required to estimate the Mathieu instability in model basin experiment 

and computer simulation. 

• Mathieu instability of a spar platform was investigated based on the stability 

chart in regular wave and regular wave simulation. However, more work is 

needed to develop the stability charts in irregular waves. 

 

Vortex-induced vibration 

 

• A more rigorous hull modeling effort using computational fluid dynamics 

using Navier-Stokes equation is needed. 

• The computer simulation and experimental modeling of vortex-induced 

vibration needs to consider the effects of the mooring lines and risers.  

• The lift and drag coefficient for the spar hull with helical strakes, risers and 

mooring lines needs to be further investigated. 
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APPENDIX A 

FLOW CHART OF WINPOST 

 

This appendix provides a flow chart for the hull/mooring/riser coupled analysis in 

time domain by WINPOST. In a time domain analysis, the mooring/riser and platform 

dynamics are solved simultaneously as an integrated system. The hydrodynamic forces on 

the platform are evaluated by diffraction theory. The first- and second-order wave force, 

added mass and radiation damping are obtained by WAMIT. The viscous force on platform 

and the hydrodynamic forces on the mooring/riser are calculated in the WINPOST. After 

calculating the hydrodynamic force on the hull/mooring/riser, the hull/mooring/riser 

coupled equation of motion is solved simultaneously by WINPOST. Thus, there are two 

processes to develop the input data. The first process uses WAMIT to get the 

hydrodynamic coefficient from diffraction theory, and second process is to prepare input 

for the slender body (i.e. mooring lines and risers) and coupling between hull and 

mooring/risers. Due to WINPOST solving hull/mooring/riser simultaneously in time 

domain, output can be divided into three parts. The first part is wave elevation output, 

second part is output for hull motion, and the third part is output for mooring lines and 

risers. Fig.A.1 shows the process of coupled analysis by WINPOST.  

The input and output of the WAMIT presented here are only the part for WINPOST 

input. The detailed explanation about input and output for WAMIT is described in the 

WAMIT user manual (Lee, 1995). Input and output of WAMIT are summarized in Table 

A.1 and Table A. 2. 
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Fig.A.1 Flow chart of coupled analysis by WINPOST 
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WAMIT Input and Output 

 

Table A.1 Input data for WAMIT 

Input  

GDF is the geometric data file, which contains a description of discretized 
wetted surface of body, body length scale, gravity, symmetry indices, and 
total number of panel. 

POT is used to input various parameters to the POTEN subprogram. 

PT2 contains two set of parameters. One specifies mode indices for which the 
second-order output is calculated. The other specifies period/wave heading 
pairs for which second-order output is calculated. 

FRC is used to input various parameters to the FORCE subprogram. 

FDF is contains all requisite data perform the integration of the quadratic 
forcing over the entire free surface exterior to the bodies. 

POTEN is subprogram, which solves for the radiation and diffraction velocity 
potential on the body surface for the specified mode. 

FORCE is subprogram, which computes global quantities including the 
hydrodynamic coefficients, motions, and first- and second-order forces. 

 

Table A. 2 Output from WAMIT 

Output 

P2F is output from POTEN, which is used as input for FORCE. 
aM  is added-mass of the platform. 

C  is radiation damping of the platform. 

LTF is linear force transfer function. 

QTF is quadratic force transfer function. 
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WINPOST Input and Output 

 

WINPOST.IN can be divided into four groups. The first group contains dimension, 

total number of leg (i.e. mooring lines and risers), maximum number of the iteration for 

static analysis, total number of time steps of calculation and output for time domain 

analysis, and position (in global coordinate system) of the origin of the rigid-body 

coordinate system. The second group contains all the material properties of the legs. The 

third group contains information about geometry of legs, spring coefficients of connection, 

location of guide frames, gap between buoyancy-cans and guide frames, and coulomb 

damping coefficient. The last group contains run-time commands.  

WINPOST.WV consists of two groups of data. The first group is for the 

hydrodynamic information of a platform from WAMIT (i.e. number of frequency, added-

mass, radiation damping, LTF, and QTF). The second group contains wave spectrum, 

current profile, and geometry and hydrodynamic coefficient (i.e. Cd, Cm, CI, and CL) of 

truss and plate members. 

WINDF.IN is the wind force time series, which is used for WINPOST. WIND1.FOR 

is subprogram, which generates the time series of wind force (i.e. WINDF.IN) on a rigid 

body (i.e. floating platform). The output files from WINPOST are summarized in Table A. 

3. 
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Table A. 3 Output from WINPOST 

Output for wave 

winpost.out contains all the input data for rechecking. 

wwave.ele records wave elevation time series in the time domain analysis. 

Output for platform 

wwbody.dis contains the displacement of the platform. 

wwbody.vel contains the velocity of the platform. 

wwbody.acc contains the acceleration of the platform. 

wwbody.frc records external forces (e.g. diffraction forces, viscous forces). 

cforcbodyx.cfr contains the contact force on the platform from buoyancy-can. 

Output for mooring lines and risers 

wwlegx.dis contains the nodal position and slope of the leg x (e.g. wwleg01.dis). 

wwlegx.frc contains the nodal reaction forces (in global coordinate) of the leg x. 

wwlegx.fcl contains the nodal reaction forces (in local/element coordinate) of the 
leg x. 

wwlegx.tsn contains the nodal axial tension of the leg x. 

wwlegx.ttn contains the nodal axial tension of the last node, which connected to the 
platform. 

cforclegx.cfr contains the contact force on buoyancy-cans from platform (i.e. guide 
frame). 
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APPENDIX B 

NOMENCLATURE 

Hydrodynamics (CHAPTER II) 
A wave amplitude. 

(1)
HSF  first-order hydrostatic restoring force.  

(1)
RF  first-order radiation force. 

(1)
EXF  first-order excitation force. 

(2)
q  F  quadratic product of first-order potential force. 

(2)
PF  second-order potential force. 

(2)
RF  second-order radiation potential 

(2)
HSF  second-order hydrostatic force. 

jlf ±

 
complete sum- and difference-frequency exciting force quadratic 

transfer functions. 

g gravitational accelerations. 

k wave number. 

k±  sum- and difference-wave number. 

n  normal vector, 1 2 3(n , n , n ) = n  and 4 5 6(n , n , n ) = ×r n . 

p pressure. 

jlp±

 
sum- and difference-frequency quadratic transfer functions for the 

pressure. 

Q±  sum- and difference- free surface forcing term. 

u, v, w particle velocity vectors with respect to x-, y-, and z- axis in Cartesian 

coordinate system. 

nV  normal velocity of the body at its surface. 

Φ  total velocity potential (real). 
(1)Φ  first-order total velocity potential (real). 
(2)Φ  second-order total velocity potential (real). 
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IΦ  incident wave velocity potential (real). 

I

(1)Φ  first-order incident wave velocity potential (real). 

(2)
IΦ  second-order incident wave velocity potential (real). 

(1)
Iφ  first-order incident wave velocity potential (complex). 

(2)
Iφ  second-order incident wave velocity potential (complex). 

I
±φ  second-order sum- and difference-incident wave potential (complex). 

DΦ  diffraction potential (real). 
)1(

DΦ  first-order diffraction potential (real). 
)2(

DΦ  second-order diffraction potential (real). 
(1)
Dφ  first-order diffraction potential (complex). 

(2)
Dφ  second-order diffraction potential (complex). 

D
±φ  second-order sum- and difference-diffraction potential (complex). 

RΦ  radiation potential (real). 
(1)
RΦ  first-order radiation potential (real). 

(2)
RΦ  second-order radiation potential (real).  

(1)
Rφ  first-order radiation potential (complex). 

(2)
Rφ  second-order radiation potential (complex). 

R
±φ  second-order sum- and difference-radiation potential (complex). 

(1)
iφ  

velocity potential of the rigid body motion with unit amplitude in the i-

th mode in the absence of incident waves. 

α  rotational body motion vector. 

Ξ  translational body motion vector. 

∇  differential operator. 
η  free surface elevation. 

rη  relative wave height. 

ρ fluid density and represent. 
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θ incident wave angle. 

ω wave frequency. 
±ω  sum- and difference-frequency. 

Platform Motion (CHAPTER II) 
aC  added mass coefficient. 

dC  drag coefficient. 

LC  lift coefficient. 

m aC ( 1 C )= +  inertia coefficient. 

C  potential damping coefficient matrix.  

( )C ω  wave damping coefficients. 

j lD( )ω − ω  difference- frequency forces quadratic transfer function. 

FG  horizontal distance between center of gravity and center of flotation. 

nF  Morison’s force. 

LF  lift force on the structure. 

vf  Strouhal frequency. 

TGM  metacentric height in the transverse direction (in calm water). 

LGM  metacentric height in the longitudinal direction (in calm water) 

1h ( )τ , 2 1 2h ( )τ τ  linear and quadratic impulse response functions. 

K  hydrostatic restoring coefficient matrix. 

jL( )ω  linear force transfer functions. 

M  body mass matrix. 
aM  added mass coefficient matrix. 

m( )∞  added mass of the body at the infinite frequency. 

R(t) retardation function. 

j lS( )ω + ω  sum- frequency forces quadratic transfer function. 

S ( )η ω  wave spectrum. 
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( )(1)
FS ω  linear wave spectrum. 

(2)
FS ( )− ω  second-order difference-wave spectrum. 

(2)
FS ( )+ ω  second-order sum-wave spectrum. 

nu , nu  fluid acceleration and velocity normal to the body. 

U∞  incident steady current velocity from far upstream. 

nx , nx  normal acceleration and velocity of the structure. 

α  phase angle. 

ijδ  Kronecker delta function. 

∀  displaced volume (in calm water). 

* complex conjugate of the quantities. 

Slender Rod Theory (CHAPTER III) 
lA (s)  interpolation functions. 

B  buoyant force of the rod per unit length. 

EA axial stiffness. 

EI bending stiffness. 
sF  hydrostatic force on the rod per unit length. 
dF  hydrodynamic load per unit length. 

′F  resultant force acting along the centerline. 

ilF  static force. 

H torque. 
1
ijlkK  material stiffness that comes from the bending stiffness. 

2
nijlkK  stiffness from tension and the curvature. 

{ }T
1 2 3L L ,L ,L=  nodal resultant moment. 

m  applied moment per unit length. 

′M  resultant moment acting along the centerline. 

ijlkM  structure mass. 
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a
ijlkM  added mass. 

ijlkM  virtual mass. 

{ }T
1 2 3N N , N , N=

 
nodal resultant force. 

mP (s)  interpolation functions. 

q  applied force per unit length. 

r  position vector of the center line of the rod. 

′r  unit tangent vector to the space curve. 

′′r  the principle normal vector. 

′ ′′×r r  bi-normal vector. 
nr , nr  acceleration and velocity normal to its centerline. 

T tension. 

T  effective tension. 
nV , nV  fluid velocity and acceleration normal to the rod centerline. 

w  weight of the rod per unit length. 

w  effective weight. 
ρ  mass of the rod per unit length. 

κ  the curvature of the line. 

λ  Lagrangian multiplier. 

λ  line tension at the end nodes and the midpoint. 

Coupling between Platform and Mooring lines and Risers (CHAPTER IV) 
A  cross sectional area of the pneumatic cylinder. 

D viscous damping coefficient. 

ie  unit vector which denotes the direction of the spring reference. 

F  tension from pneumatic cylinder. 
LK  translational spring constant. 

Kθ  rotational spring constant. 
MK  coefficient from mooring line. 
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RK  coefficients from riser. 
CK  coupling coefficient matrix between line and platform. 
PfK  coefficients from the platform. 

ip  position vector of the point on the platform where the springs are 

attached. 

P  pressure inside of the pneumatic cylinder. 

ir  position vector of the end node of the line which is attached to the rigid 

body by spring. 

0T  initial tension. 

V  volume inside of the pneumatic cylinder. 

iX  translational motion of the platform. 

Z  stroke of the pneumatic cylinder. 

iθ  rotational motion of the platform. 

µ  coulomb damping coefficient. 

Buoyancy-can Effect on Spar Platform (CHAPTER V) 
Hs significant wave height 

pω  peak frequency 

γ over shooting parameter 

pf  average factor derived from measured spectrum 

σ(z) standard deviation of wind speed and related to turbulence intensity 

wV (z)  one hour mean wind speed (m/s) z meters above water level 
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