40 research outputs found

    Real-time pollen monitoring using digital holography

    Get PDF
    We present the first validation of the SwisensPoleno, currently the only operational automatic pollen mon-itoring system based on digital holography. The device pro-vides in-flight images of all coarse aerosols, and here wedevelop a two-step classification algorithm that uses theseimages to identify a range of pollen taxa. Deterministiccriteria based on the shape of the particle are applied toinitially distinguish between intact pollen grains and othercoarse particulate matter. This first level of discriminationidentifies pollen with an accuracy of 96 %. Thereafter, in-dividual pollen taxa are recognized using supervised learn-ing techniques. The algorithm is trained using data obtainedby inserting known pollen types into the device, and out ofeight pollen taxa six can be identified with an accuracy ofabove 90 %. In addition to the ability to correctly identifyaerosols, an automatic pollen monitoring system needs to beable to correctly determine particle concentrations. To fur-ther verify the device, controlled chamber experiments us-ing polystyrene latex beads were performed. This providedreference aerosols with traceable particle size and numberconcentrations in order to ensure particle size and samplingvolume were correctly characterized

    The influence of station density on climate data homogenization

    Get PDF
    Relative homogenization methods assume that measurements of nearby stations experience similar climate signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru, however, networks often suffer from low-station density. The aim of this study is to quantify the influence of network density on homogenization. To this end, the homogenization method HOMER was applied to an artificially thinned Swiss network. Four homogenization experiments, reflecting different homogenization approaches, were examined. Such approaches include diverse levels of interaction of the homogenization operators with HOMER, and different application of metadata. To evaluate the performance of HOMER in the sparse networks, a reference series was built by applying HOMER under the best possible conditions. Applied in completely automatic mode, HOMER decreases the reliability of temperature records. Therefore, automatic use of HOMER is not recommended. If HOMER is applied in interactive mode, the reliability of temperature and precipitation data may be increased in sparse networks. However, breakpoints must be inserted conservatively. Information from metadata should be used only to determine the exact timing of statistically detected breaks. Insertion of additional breakpoints based solely on metadata may lead to harmful corrections due to the high noise in sparse networks

    Worldwide trends in population-based survival for children, adolescents, and young adults diagnosed with leukaemia, by subtype, during 2000–14 (CONCORD-3) : analysis of individual data from 258 cancer registries in 61 countries

    Get PDF
    Background Leukaemias comprise a heterogenous group of haematological malignancies. In CONCORD-3, we analysed data for children (aged 0–14 years) and adults (aged 15–99 years) diagnosed with a haematological malignancy during 2000–14 in 61 countries. Here, we aimed to examine worldwide trends in survival from leukaemia, by age and morphology, in young patients (aged 0–24 years). Methods We analysed data from 258 population-based cancer registries in 61 countries participating in CONCORD-3 that submitted data on patients diagnosed with leukaemia. We grouped patients by age as children (0–14 years), adolescents (15–19 years), and young adults (20–24 years). We categorised leukaemia subtypes according to the International Classification of Childhood Cancer (ICCC-3), updated with International Classification of Diseases for Oncology, third edition (ICD-O-3) codes. We estimated 5-year net survival by age and morphology, with 95% CIs, using the non-parametric Pohar-Perme estimator. To control for background mortality, we used life tables by country or region, single year of age, single calendar year and sex, and, where possible, by race or ethnicity. All-age survival estimates were standardised to the marginal distribution of young people with leukaemia included in the analysis. Findings 164563 young people were included in this analysis: 121328 (73·7%) children, 22963 (14·0%) adolescents, and 20272 (12·3%) young adults. In 2010–14, the most common subtypes were lymphoid leukaemia (28205 [68·2%] patients) and acute myeloid leukaemia (7863 [19·0%] patients). Age-standardised 5-year net survival in children, adolescents, and young adults for all leukaemias combined during 2010–14 varied widely, ranging from 46% in Mexico to more than 85% in Canada, Cyprus, Belgium, Denmark, Finland, and Australia. Individuals with lymphoid leukaemia had better age-standardised survival (from 43% in Ecuador to ≄80% in parts of Europe, North America, Oceania, and Asia) than those with acute myeloid leukaemia (from 32% in Peru to ≄70% in most high-income countries in Europe, North America, and Oceania). Throughout 2000–14, survival from all leukaemias combined remained consistently higher for children than adolescents and young adults, and minimal improvement was seen for adolescents and young adults in most countries. Interpretation This study offers the first worldwide picture of population-based survival from leukaemia in children, adolescents, and young adults. Adolescents and young adults diagnosed with leukaemia continue to have lower survival than children. Trends in survival from leukaemia for adolescents and young adults are important indicators of the quality of cancer management in this age group.peer-reviewe

    Global survival trends for brain tumors, by histology: analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000–2014 (CONCORD-3)

    Get PDF
    Background: Survival is a key metric of the effectiveness of a health system in managing cancer. We set out to provide a comprehensive examination of worldwide variation and trends in survival from brain tumors in adults, by histology. Methods: We analyzed individual data for adults (15–99 years) diagnosed with a brain tumor (ICD-O-3 topography code C71) during 2000–2014, regardless of tumor behavior. Data underwent a 3-phase quality control as part of CONCORD-3. We estimated net survival for 11 histology groups, using the unbiased nonparametric Pohar Perme estimator. Results: The study included 556,237 adults. In 2010–2014, the global range in age-standardized 5-year net survival for the most common sub-types was broad: in the range 20%–38% for diffuse and anaplastic astrocytoma, from 4% to 17% for glioblastoma, and between 32% and 69% for oligodendroglioma. For patients with glioblastoma, the largest gains in survival occurred between 2000–2004 and 2005–2009. These improvements were more noticeable among adults diagnosed aged 40–70 years than among younger adults. Conclusions: To the best of our knowledge, this study provides the largest account to date of global trends in population-based survival for brain tumors by histology in adults. We have highlighted remarkable gains in 5-year survival from glioblastoma since 2005, providing large-scale empirical evidence on the uptake of chemoradiation at population level. Worldwide, survival improvements have been extensive, but some countries still lag behind. Our findings may help clinicians involved in national and international tumor pathway boards to promote initiatives aimed at more extensive implementation of clinical guidelines

    Radiative fluxes and their impact on the energy balance of the Greenland ice sheet

    No full text

    Tafel 2.1: Niederschlagsmessnetze

    No full text

    Errors in daily ablation measurements in northern Greenland, 1993-94, and their implications for glacier climate studies

    No full text
    AbstractAblation climate studies were made at two locations in northern Greenland in the summers of 1993 and 1994, respectively. Daily ablation was measured at ten stakes within a small area, and the data were compared with each other to detect gross errors. For example, high standard deviations for data taken on the same day, or low correlations between data series at different stakes, indicate erroneous data. After discarding data for one stake in 1993 and two stakes in 1994, random errors in daily ablation data for individual stakes are ± 5 kg m 2 d−1, which is further reduced to only about db 2 kg m−2d−1 by averaging over eight or nine stakes. Random errors in calculated energy balances using the present ablation data are much lower than found in earlier stuthes in West Greenland where ablation was only measured on three stakes without any attempt to detect gross errors. Aside from day-to-day errors, there are ±10% differences in mean ablation at different stakes, which are probably caused by small-scale variations in surface albedo. Such interstate differences give a ± 10% uncertainty in positive degree-day factors, which are 9.8 ± 0.9 and 5.9 ± 0.6 kg m 2 d −1 deg −1 for the two sites.</jats:p
    corecore