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ABSTRACT: Relative homogenization methods assume that measurements of nearby stations experience similar climate
signals and rely therefore on dense station networks with high-temporal correlations. In developing countries such as Peru,
however, networks often suffer from low-station density. The aim of this study is to quantify the influence of network density
on homogenization. To this end, the homogenization method HOMER was applied to an artificially thinned Swiss network.

Four homogenization experiments, reflecting different homogenization approaches, were examined. Such approaches
include diverse levels of interaction of the homogenization operators with HOMER, and different application of metadata.
To evaluate the performance of HOMER in the sparse networks, a reference series was built by applying HOMER under the
best possible conditions.

Applied in completely automatic mode, HOMER decreases the reliability of temperature records. Therefore, automatic use
of HOMER is not recommended. If HOMER is applied in interactive mode, the reliability of temperature and precipitation
data may be increased in sparse networks. However, breakpoints must be inserted conservatively. Information from metadata
should be used only to determine the exact timing of statistically detected breaks. Insertion of additional breakpoints based
solely on metadata may lead to harmful corrections due to the high noise in sparse networks.
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1. Introduction

Long-term and high-quality climate data are essential
for monitoring and studying climate variability and
change. Measurements are often affected by non-climatic
influences such as station relocations, observer changes,
changes in the station environment, changes of instru-
ments, and station maintenance. To remove such
inhomogeneities and to obtain more reliable climate
data, time series must be homogenized (e.g. Peterson
et al., 1998; Aguilar et al., 2003; Trewin, 2010). Besides
affecting single station measurements, inhomogeneities
may bias the network average if they have a tendency
in one direction during a certain period (Venema et al.,
2012). In the Swiss station network for instance, a tem-
perature trend analysis for the period 1864–2000 using
raw data underestimates the temperature trend compared
to homogenized data by 0.4 ∘C/100 years (Begert et al.,
2005), which amounts to around 40–50% of the reported
trend. Nevertheless, many studies still use raw data for
their analyses, often leading to misinterpretation of the
results (Cao and Yan, 2012). Hence, conclusions of
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such research should be interpreted with care, because
trustworthy trend assessments must rely on high-quality
homogenous data (e.g. Begert et al., 2005; Reeves et al.,
2007; Toreti et al., 2010; Venema et al., 2012).

Relative homogenization presumes that nearby stations
have the same climate signals. The performance of homog-
enization methods is therefore often tested using highly
correlated data. In many regions of the world station
densities are low however. For instance, in the Peru-
vian Andes the station density is around ten times lower
than in Switzerland (one temperature station per roughly
5000 km2 in Peru compared to one per 475 km2 in Switzer-
land). Additionally, data quality in such regions can be low
(e.g. measurement errors and missing data), leading to a
substantial fraction of stations which is not suitable for
climate studies. The combination of strong climate gradi-
ents, the sparse network, and the exclusion of time series
due to quality problems all contribute to weak correlations.
This may impact the efficiency of the homogenization
process (Caussinus and Mestre, 2004; Domonkos, 2013).
However, only one publication comparing the homoge-
nization of a dense and a thinned network is known to
the authors: Vertačnik et al. (2015). They found that a
reduction of the Slovenian station network from 60 to
44 (i.e. a reduction from one station per 307 km2 to one
station per 461 km2) does not substantially influence the
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homogenization results. However, the thinned network in
Slovenia is still about ten times denser than the network
in Peru.

Analysis and assessment of climate change and the
implementation of climate services is of great importance
for regions that are especially vulnerable to climate change
impacts (Brooks and Adger, 2003), such as the Andean
area (Buytaert et al., 2006; Buytaert and De Bièvre, 2012;
Salzmann et al., 2009; Vuille et al., 2008; World Bank,
2010). Therefore, the project CLIMANDES (http://www
.senamhi.gob.pe/climandes/), a project within the Global
Framework for Climate Services (GFCS), aims at provid-
ing user-tailored climate services in two pilot regions in
Peru. One goal of CLIMANDES is to implement a suitable
homogenization method at the national meteorological
and hydrological service of Peru SENAMHI (Rosas et al.,
2016). To this end, the recently developed semi-automatic
homogenization procedure HOMER (Mestre et al., 2013)
was chosen since it is state-of-the-art (developed after
the COST Action on Homogenization), freely available,
and runs on the open-source software R (R Development
Core Team, 2014). Until now, only a few studies exist
that evaluate HOMER (Freitas et al., 2013; Coll et al.,
2014; Vertačnik et al., 2015; Noone et al., 2016). Never-
theless, the approach is currently being implemented in
several weather services [e.g. Météo-France, the Norwe-
gian Meteorological Institute, MeteoSwiss, the Irish Mete-
orological Service Met Éireann, and the Slovenian Envi-
ronment Agency (Vertačnik et al., 2015)], and it is already
applied in countries where station networks are sparse such
as Bolivia (Vicente-Serrano et al., 2015; López-Moreno
et al., 2016) or Tanzania (Luhunga et al., 2014).

Within the project CLIMANDES, HOMER was applied
to station records of the time period 1964 to 2012 from
the southern Andes of Peru. Analyses of the homogenized
temperature records showed that different approaches
(exclusion of stations with quality problems, metadata
availability, and different homogenization operators)
resulted in differences in the average network trends
of 0.06–0.08 ∘C/decade, while the estimated average
network trends range between 0.22 and 0.28 ∘C/decade
for maximum temperature (TX), and between 0.03 and
0.11 ∘C/decade for minimum temperature (TN) (e.g.
Rosas et al., 2016). These considerable differences raised
questions on the reliability of breakpoint detection and
correction in sparse station networks. Post-analysis of
the corrected breakpoints has shown that the standard
deviation of the correction amounts is around 0.95 ∘C
for TX and 1.05 ∘C for TN. This is considerably larger
than the standard deviation of detected breakpoints nor-
mally encountered in Europe, which is reported to range
between 0.6 and 0.8 ∘C (Auer et al., 2007; Brunetti et al.,
2006; Caussinus and Mestre, 2004; Venema et al., 2012).
On average, breakpoints were detected every 13–20
years in the Peruvian network, which is comparable to
the breakpoint frequency detected in Western European
temperature records (Venema et al., 2012). The low sta-
tion density in the Andes however leads to more noise
in the difference series, and thus breakpoints may be

less detectable (Auer et al., 2005). Hence, there may
actually be a higher number of breakpoints in reality. This
ambiguity in breakpoint detection may be a reason for the
differing average network trends mentioned above, and
it provides motivation for the present study to investigate
the influence of station density on homogenization.

Switzerland and the Peruvian Andes share pronounced
spatial climate gradients and a complex topography. But in
contrast to the station networks in the Peruvian Andes, the
Swiss network is dense and contains many high-quality
time series back to the 19th century. The Swiss station
histories are nearly complete, which allows for a detailed
comparison of reported and statistically detected break-
points (Begert et al., 2003; Kuglitsch et al., 2012). Based
on these near ideal conditions for homogenization and
the similar topography, a comparison experiment is con-
ducted in this study: the Peruvian network characteristics
are mimicked by thinning the Swiss station network to
quantify the effects of homogenization in sparse networks.
Of course, the mid-latitude climate in Switzerland differs
substantially from the tropical climate in Peru. The Peru-
vian climate is strongly influenced by inter-annual cycles
and (sub-)tropical convection. The El Niño Southern
Oscillation most dominantly influences the climate in
the region, together with the Pacific Decadal Oscillation
and the Southern Annular Mode (Seiler et al., 2012).
Such variability modes may modulate the performance
of homogenization methods and cannot be reflected by
the Swiss network. Results from this study are hence not
entirely transferable for applications in Peru. However,
the study presents a first effort to quantify the influence of
low station density on homogenization, trying to closely
reflect the Peruvian network characteristics.

2. Data

2.1. Peruvian network

This section introduces the station network in the south-
ern Peruvian Andes, which is used to characterize a
low-density network. Averaged over the area, the station
number in the region of interest corresponds to approxi-
mately one station per 10 000 km2 for temperature (TX and
TN), and one per 4000 km2 for precipitation (P). Meteoro-
logical stations that are suitable for climate analyses in the
Peruvian Andes typically run since 1964 and have less than
20% missing values.

2.2. Swiss network

The Swiss stations used for this study are 31 for tempera-
ture and 55 for precipitation (Figure 1). The station density
in Switzerland corresponds to one station per 475 km2 for
temperature and one per 100 km2 for precipitation. Mea-
surements since 1961 are used to reflect the typical Peru-
vian time series length of 50 years.

2.3. Correlation analysis

Correlation is the most frequently used measure to iden-
tify reference stations for homogenization (Aguilar et al.,
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Figure 1. Meteorological stations in Switzerland (all colours). The stations selected for the three clusters are colour-coded: ‘Alps’ (red), ‘South’
(blue), and ‘North’ (purple) for precipitation (circles) and temperature (crosses). The gray background colors represent the elevation in meters above

sea level.

2003). For this reason, the correlation structures of the
Swiss and the Peruvian networks are analysed. To this
end, the Spearman-correlation of the first differences of the
de-seasonalized monthly time series was calculated (Peter-
son and Easterling, 1994).

The structure of the pairwise correlations for the Swiss
and the Peruvian networks is shown in Figure 2. We
observe that the correlations in the Swiss network range
between 0.6 and nearly 1.0 (TX and TN) and between 0.1
and nearly 1.0 (P) for distances up to 100 km. In the Peru-
vian network, correlations for temperature range between
0.2 and 0.9 (TX and TN) and between 0.1 and 0.8 (P). For
homogenization, the correlation of the candidate station
to its most closely correlated neighbours is most relevant.
Analysis of the Peruvian data shows that typical correla-
tions of the six best correlating neighbours range between
0.60 and 0.80 (TX and TN) and 0.45 and 0.60 (P). These
correlations are referred to as the typical Peruvian corre-
lations in the following. In Switzerland, these correlations
are typically well above 0.90 for both temperature and
precipitation.

The best correlations of monthly means (TX and TN)
and totals (P) between neighbouring stations of a certain
distance in Peru are 0.1–0.2 lower than in Switzerland
(Figure 2). This is in accordance with New et al. (2000)
stating that correlations between stations become insignif-
icant after shorter distances in the tropics (0 to 30∘S) than
in the subtropics and mid-latitudes (30 to 60∘N). New
et al. (1999) attribute these differences mainly to different
large-scale circulation patterns. However, experiences
in the field suggest that systematically smaller spatial
representativeness of the station sites, lower standard
of maintenance, and more frequent measurement and
post-processing errors may also contribute to the lower
correlations observed in Peru.

3. Methods

3.1. HOMER

The results of the model inter-comparison study (Venema
et al., 2012) conducted within the COST Action ES0601
HOME ‘Advances in Homogenisation Methods of Cli-
mate Series: An Integrated Approach’ demonstrate that
the performance of some of the widely used methods
differ considerably. Based on these results, the method
HOMER (Mestre et al., 2013) was designed. HOMER
combines two of the best performing methods PRODIGE
(Caussinus and Mestre, 2004) and ACMANT (Domonkos
et al., 2011a) with a joint-segmentation breakpoint detec-
tion method originating from DNA-segmentation (Picard
et al., 2011).

Combining different break detection algorithms has been
demonstrated to be beneficial. It results in higher con-
fidence when accepting or rejecting breakpoints, espe-
cially if a breakpoint cannot be confirmed by metadata
(Toreti et al., 2011; Kuglitsch et al., 2012). The correc-
tion of the breakpoints in HOMER is done based on a
two-factor analysis of variance (ANOVA) model approach.
It allows for the correction of a set of stations simulta-
neously and automatically (Mestre et al., 2013), and was
shown to improve breakpoint correction over traditional
approaches (Domonkos et al., 2011a; Domonkos, 2013).
In this study, both PRODIGE (called ‘pairwise detection’
in HOMER) and joint segmentation were applied. The
ACMANT-component of HOMER was not used since it
was constructed for mid and high latitudes and not for use
in tropical areas (Domonkos et al., 2011a).

Homogenization with HOMER is an iterative process.
Breakpoint detection procedures (pairwise and joint) are
alternated with the correction of the breakpoints. The
alternating procedure is stopped once every time series is
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Figure 2. Correlations of station pairs of the Swiss (grey circles) and the Peruvian pilot network (black crosses) as a function of the stations’ distance.

considered homogeneous by the homogenization operator.
Information from metadata may be included after each
detection step. In this study, at most three detection
and correction iterations were performed. Following the
recommendations of Venema et al. (2012), TX and TN
data were homogenized on a monthly scale. Precipitation
was homogenized on a yearly scale instead, because its
signal-to-noise ratio (SNR) is considered too low on the
monthly scale (Venema et al., 2012). SNR is defined as
the standard deviation of the breakpoints divided by the
standard deviation of the noise of the difference series.

3.2. Construction of the dense and sparse networks

To investigate the performance of HOMER in sparse net-
works, dense and sparse networks were constructed from
the complete Swiss network. They were built such that
the dense networks have the highest possible station cor-
relations while the sparse network represents the typical
correlations found in Peru.

To this end, three groups were constructed such that:
(1) the intra-group correlations are high (R2 ≥ 0.85) and
(2) the inter-group correlations represent the typical Peru-
vian correlations (0.60≤R2 ≤ 0.80 for TN and TX, and
0.45≤R2 ≤ 0.60 for P). The selection of the three groups,
with about 6 to 25 members each, was based on hier-
archical clustering (Maechler et al., 2013; Kaufman and
Rousseeuw, 1990; Struyf et al., 1996, 1997; Lance and
Williams, 1966; Begert 2008). They are referred to as
‘North’, ‘Alps’, and ‘South’, according to the location of
the stations (Figure 1). Note that the groups are the same
for TN and TX, but are partly different for P. In the follow-
ing, these groups are called the dense networks.

In a next step, the sparse networks were constructed.
Each sparse network is built by randomly sampling one
station out of each of the three dense networks. Due
to the restraint on the inter-group correlations of the
dense networks, each of these sparse networks fulfills
the Peruvian correlation condition. Since the number of
stations (e.g. three) of each sparse network is not large

enough for homogenization with HOMER, each sparse
network was complemented with data from additional
stations. For temperature, data from the quality controlled
European Climate Assessment & Dataset (Van Engelen
et al., 2008) were used. For precipitation, records from
south-eastern Switzerland were selected to complement
the sparse groups. While this is not an optimal setting
for homogenization, it reflects the situation in Peru where
stations are often clustered. The correlations of the addi-
tional stations with the sampled stations fulfill the Peruvian
correlation requirements. However, correlations between
these additional stations were not restricted.

For each climatological parameter, 30 sparse networks
were built. The sparse networks contain between 5 to
25 stations for temperature and between 7 to 14 stations
for precipitation. Due to the correlation-based sampling
procedure described above, the number of stations in each
sparse network varies strongly. This setting well repre-
sents the variability of station availability in low density
networks such as the one observed in Peru. Due to the
random samples, some stations of the dense networks are
part of more than one sparse network. On the other hand,
some stations of the dense networks were not sampled
at all and hence do not appear in any sparse network.
For evaluation, only so-called candidate stations were
considered. These consist of all stations of the dense
networks that appear at least once in one of the sparse
networks, as a result a total of 30 temperature stations and
40 precipitation stations were analyzed.

3.3. Experiments

The results of data homogenization not only depend on the
homogenization algorithms selected but also on available
resources such as time or metadata availability. In order to
investigate the influence of the availability of resources,
four homogenization experiments were conducted: (1)
running HOMER in fully automatic mode (auto), (2) run-
ning HOMER in interactive mode (manu) without using
metadata, (3) running HOMER in interactive mode and
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with the use of metadata for breakpoint corroboration
(meta-post), and (4) inserting important breakpoints based
on metadata before statistical detection (meta-pre). These
experiments were conducted for each variable and each
dense and sparse network, resulting in a total of 396
homogenization experiments.

The experiment auto allows assessing the perfor-
mance of HOMER with regard to the convenience of
the procedure, i.e. the low human effort required. Meta
information cannot be used in the automatic mode.
The experiment manu reflects the situation of missing
metadata. For both experiments meta-post and meta-pre,
comprehensive metadata are available, but metadata are
used differently.

In the sparse network experiments, only metadata of the
candidate stations were used. This reflects the situation in
countries such as Peru where metadata are mostly lacking
and can often only be collected retrospectively, which
is very time consuming (revision of original datasheets,
observer questioning, etc.). We therefore assume that in
reality this is only done for important stations, reflected
here by the candidate stations.

3.4. Choice of the reference dataset

To assess the performance of HOMER in sparse networks,
all experiments are compared to a reference dataset. In this
study, meta-post applied to the dense network was chosen
as the reference. This choice is justified below.

Venema et al. (2012) have shown that the algorithm
PRODIGE, which is built-in HOMER (Mestre et al.,
2013), is amongst the best performing homogeniza-
tion methods. An analysis of the data used in the
inter-comparison study showed that the correlations
of the six most closely correlated stations are slightly
lower than the correlations between the Swiss stations.
Hence, the high correlations of the Swiss network com-
bined with the low number of breakpoints [one breakpoint
in 48 years (Kuglitsch et al., 2012) compared to roughly
one breakpoint in 15 to 20 years in Europe (Venema et al.,
2012)] suggests a good performance of HOMER in the
dense Swiss network. Furthermore, the use of compre-
hensive metadata in meta-post increases the reliability of
the detected breakpoints. Since meta-post takes advantage
of all resources, the performance of this approach can be
expected to be very high.

It is clear that the truth about the occurrence and mag-
nitude of the breakpoints cannot be known in real obser-
vational data. On the other hand, the advantage of using a
real dataset for evaluation is evident: the statistical proper-
ties of the data and their inhomogeneities are realistic. In
the surrogate dataset by Venema et al. (2012) for example,
the introduced SNR was inadvertently twice as high as real
datasets suggest (V. Venema, 2016; personal communica-
tion).

3.5. Performance measures

To assess the performance of a homogenization method,
different error metrics are usually applied (Venema et al.,

2012; Domonkos, 2013). In this study, the temporal con-
sistency of the data series (Section 3.5.1.), the linear trends
(Section 3.5.2.), and the measure of efficiency (Section
3.5.3.) are evaluated.

3.5.1. CRMSE and CRMSF

The centred root mean squared error (CRMSE) is used to
measure the temporal consistency of the homogenized or
the raw dataset (x) with regard to the reference dataset
(y) (e.g. Venema et al., 2012; Domonkos, 2013). It is
defined as:

CRMSE (x̃, ỹ) =

√√√√1
n

n∑
i=1

(
x̃i − ỹi

)2

Here, x̃ = x − m (x) refers to the centred time series, m(x)
is the mean of x, and n is the number of time steps.
In contrast to the non-centred root mean squared error
(RMSE), missed or erroneous breaks are equally penalized
with respect to the beginning and end of the time series.
Perfect data, corresponding to the reference dataset in this
study, result in CRMSE = 0.

For precipitation, relative changes are considered and
therefore the centred root mean squared fraction (CRMSF)
is used (Golding, 1998):

CRMSF (x̃, ỹ) = exp (CRMSE (log (x̃) , log (ỹ)))

= exp
⎛⎜⎜⎝
√√√√1

n

n∑
i=1

(
log

(
x̃i

)
− log

(
ỹi

))2
⎞⎟⎟⎠

where xi > 0 and yi > 0. Here, x̃ = x
gm(x)

refers to the centred
time series, and gm(x) is the geometric mean of x. Perfect
data result in CRMSF = 1.

3.5.2. Trend estimation

Linear trends are estimated based on normalized yearly
data using ordinary least squares regression (Frei, 2014;
Chambers, 1992; Wilkinson and Rogers, 1973). The yearly
precipitation totals are log-transformed to approximate the
Gaussian distribution of the residuals more closely. Trends
are expressed in unit per 10 years. For evaluation, the
RMSE and the bias of the trends are determined. The
differences in the average network trends are evaluated
using the Wilcoxon signed-rank test (Wilcoxon, 1945,
1949; Bauer, 1972; Hollander and Wolfe, 1973).

3.5.3. Measures of efficiency

The measure of efficiency E is defined as the percentage
of the RMSE of the homogenized dataset relative to the
RMSE of the raw data (Domonkos et al., 2011b):

E =
RMSEraw − RMSEhom

RMSEraw
× 100.

In this manuscript, ET refers to the efficiency mea-
sure of the RMSE of the yearly trend estimates, while
EC denotes the efficiency measure of both the CRMSE
and the CRMSF. A positive efficiency value indicates an
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Table 1. Results of the homogeneity (CRMSE and CRMSF) and trend (network average trend and RMSE) analyses of the dense and
sparse networks for all experiments, as well as for the raw data.

Variable Raw Dense networks Sparse networks

Reference manu meta-pre auto meta-post manu meta-pre auto

Homogeneity

CRMSE
TX 0.28 0.00 0.11 0.15 0.52 0.25 0.25 0.32 0.30
TN 0.27 0.00 0.14 0.14 0.32 0.26 0.26 0.31 0.37

CRMSF P 1.02 1.00 1.01 1.01 1.01 1.02 1.01 1.02 1.08

Trends

∘C/dec [u/decade]
TX 0.31 0.34 0.34 0.37 0.40 0.34 0.32 0.35 0.27
TN 0.29 0.32 0.29 0.33 0.17 0.29 0.28 0.30 0.20

log(mm)/dec P 0.007 0.007 0.007 0.007 0.006 0.008 0.008 0.012 0.011

RMSE
TX 0.16 0.00 0.02 0.05 0.13 0.08 0.08 0.06 0.11
TN 0.13 0.00 0.04 0.03 0.16 0.06 0.07 0.06 0.14
P 0.017 0.000 0.008 0.008 0.009 0.010 0.013 0.014 0.012
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the lower right corner of each figure. [Colour figure can be viewed at wileyonlinelibrary.com].

improvement of the homogenized data over the raw data,
while a negative value indicates a deterioration of the data
after homogenization.

4. Results

4.1. Homogenizing dense networks

4.1.1. Reference dataset

Almost 60 breakpoints were corrected in 30 temper-
ature series and 16 breakpoints were corrected in 40
precipitation series. This corresponds to one breakpoint
every 25 years for temperature and one breakpoint every
125 years for precipitation. The low number of detected
breakpoints in precipitation may be attributed to the higher
noise level of precipitation, as well as to the more robust
measurement system (Begert et al., 2005). In the precipita-
tion network, all breakpoints were corroborated with meta-
data. For temperature, the number of corroborated break-
points ranges between 70 and 85%.

The CRMSE (CRMSF) between the raw and the
reference dataset is 0.27 ∘C for temperature and 1.02
for precipitation (Table 1 and Figure 3). With regard
to trends, the bias of the network average trend is
0.03 ∘C/decade for temperature, and is close to zero
for precipitation. The RMSE of the trends ranges
between 0.13 and 0.16 ∘C/decade for temperature, and is
0.016 log(mm)/decade for precipitation (Figure 4).

4.1.2. Interactive mode

In meta-pre, the number of corrected temperature break-
points is 50% higher than the number of breakpoints
of the reference. Around 83–89% of the breakpoints
were inserted due to a priori information from meta-
data (Figures 5 and 6). For precipitation, a total of 42
breakpoints were corrected in meta-pre (Figure 7), out
of which 40 were inserted based on metadata. For manu,
the number of detected temperature breakpoints is simi-
lar to the reference, and decreases by around 30–70% for
precipitation.

© 2017 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 4670–4683 (2017)
on behalf of the Royal Meteorological Society.
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Despite the differences in breakpoint number in manu,
meta-pre, and the reference, the annual mean correc-
tion values between the three experiments do not differ
strongly (Figures 5–7). An exception was observed in the
precipitation network ‘South’ which was considered to be
completely homogeneous by the reference. In contrast in
meta-pre, a total of 11 breakpoints were inserted into this
network.

For manu and meta-pre, the bias of the average network
trend is similar to the bias of the raw data. It ranges
between +/− 0.1 to 0.3 ∘C/decade for temperature, and
is almost zero for precipitation. The RMSE of the trends
decreases by about 60–80% for temperature compared
to the raw data, and by 50% for precipitation (Figure 3).
The efficiency measure of the CRMSE (CRMSF) ranges
between 48 and 60% for temperature, and between 20
(meta-pre) and 40% (manu) for precipitation (Figure 3).
We observe that manu is slightly more efficient in terms
of CRMSE than meta-pre for TX, but underperforms for

TN. In contrast for precipitation, manu is more efficient
than meta-pre.

4.1.3. Automatic mode

For precipitation, the results of auto in the dense network
show an increase in the homogeneity and trend accuracy
that is comparable to the experiment meta-pre (Table 1
and Figure 3). For temperature, auto introduces more error
into the data through homogenization (Figure 3). The
unsatisfying results for temperature are surprising and can
be traced back to the detection of a breakpoint around
1987. The timing of this breakpoint coincides with a sud-
den large temperature rise in Switzerland (Begert et al.,
2005) and Europe in general. This climate shift is also
found in independent variables such as spring phenology
or snow cover (e.g. Brönnimann, 2015). Since the break-
point coincides with a climatic feature, these breaks are
erroneously introduced by HOMER. Note that the prob-
lem was already mentioned by Mestre et al. (2013), who
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on behalf of the Royal Meteorological Society.



STATION DENSITY AND HOMOGENIZATION 4677

0
10

20
30

40

N
um

be
r 

of
 b

re
ak

 p
oi

nt
s

1960 1970 1980 1990 2000 2010

North

Reference
Dense: manu
Dense: meta−pre
Dense: auto
Sparse: meta−post
Sparse: manu
Sparse: meta−pre
Sparse: auto

0
5

10
15

20
25

30

1960 1970 1980 1990 2000 2010

Alps 0
5

10
15

1960 1970 1980 1990 2000 2010

South

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

1960 1970 1980 1990 2000 2010

C
or

re
ct

io
n 

va
lu

e

Year

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

1960 1970 1980 1990 2000 2010

Year
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

1960 1970 1980 1990 2000 2010

Year

Figure 5. Upper figures: Cumulated number of detected breaks in TX for each experiment for dense (solid) and sparse (dashed) networks for ‘North’,
‘Alps’, and ‘South’ for all experiments (meta-post (purple), manu (red), meta-pre (orange), and auto (blue)). Lower figures: Mean correction values

of each experiment.

state that ‘… , the automatic joint-detection is not perfect’
(pp. 60), and that the segmentation of the R-function mul-
tiseg ‘wrongly attributes a climatic feature’ to the break-
points detected in a time series of Vienna around 1986. The
near simultaneous erroneous detection of a breakpoint in
1987 leads to biased corrections, especially in the North
network for TX with a bias in the trend of 0.2 ∘C/decade
(Figures 4 and 5).

4.2. Homogenizing sparse networks

4.2.1. Interactive mode

Temperature: Both experiments manu and meta-post
reduce the CRMSE in sparse temperature networks, and
improve the accuracy of the estimated trends (Figure 3).
Both approaches are therefore useful to improve the
homogeneity and trend analyses of temperature data
in sparse station networks. In contrast, the experiment
meta-pre decreases the homogeneity of station data in
sparse networks.

The efficiency measure of the CRMSE is slightly posi-
tive for both meta-post and manu (EC ≈ 13% for TX, and
EC ≈ 4% for TN) (Figure 3). Compared to the dense net-
works however (48%≤EC ≤ 60% for manu and meta-pre),
these values are rather low. Regarding individual stations,
the lowest number of stations that show a decrease of the
homogeneity is reached by manu (23% for TX; 43% for

TN), followed by meta-post (37% for TX; 50% for TN).
In meta-pre, EC is negative (EC ≈−13%), implying that
meta-pre decreases the homogeneity of the temperature
series in sparse networks. Further, meta-pre decreases the
homogeneity of more than 50% of the stations (Table 2
and Figure 8).

The trend bias of the sparse networks lies within
+/−0.03 ∘C/decade for TX (+/−0.04 ∘C/decade for TN),
corresponding to roughly 10% of the estimated average
network trend. The bias is not reduced compared to the raw
data. However, the trends are more consistent after homog-
enization (Figure 4). The RMSE of the trends is reduced
from 0.13 to 0.16 ∘C/decade (raw data) to between 0.06
and 0.08 ∘C/decade for all experiments (Table 1), resulting
in an efficiency measure of around 50% (Figure 3).

The number of detected breakpoints for manu and
meta-post is around 25–40% smaller in the sparse net-
works compared to the dense networks (Figures 5 and 6).
Totally, 60–70% of the breakpoints was corroborated by
metadata (meta-post). Post-analysis of the homogenized
data showed that the SNR in the sparse network is almost
halved compared to the dense network. The low number
of statistically detected breakpoints is hence attributed to
the low SNR.

The low SNR also influences the correction of the
breakpoints. This is illustrated through a comparison of

© 2017 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 4670–4683 (2017)
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Figure 6. Same as Figure 5 for minimum temperature.

the correction values of meta-pre dense and sparse. By def-
inition, (almost) the same breakpoints are inserted in the
dense and sparse networks. The correction factors however
differ strongly. Examples can be found for TN in the Alps,
and for TX in the North and South networks between 1975
and 1980 (Figures 5 and 6). The average correction values
differ by around 0.1–0.3 ∘C, indicating that the low SNR
may introduce error into the correction of breakpoints.
Additionally we observe that breakpoints, which occur
due to the automation of the network around 1980, were
often not detected in the sparse networks (Figures 5
and 6).

Precipitation: Around 70% of the stations are consid-
ered homogeneous by the reference homogenization. For
simplicity, these 70% are called the homogeneous time
series, while the remaining 30% are referred to as the
inhomogeneous time series in the following paragraphs.

All sparse experiments improve the homogeneity
of 28% of the time series (Table 2). Hence, 93% of
the inhomogeneous time series are improved after
homogenization. However, around one third of the
homogeneous time series went through a correction by
meta-pre and meta-post, resulting in an adverse effect
for these station records. Apparently, breakpoints were
inserted too liberally by meta-pre and meta-post in the
sparse network. Manu has the best performance for
sparse precipitation networks since data homogenization
increased the CRMSF of only 5% of the time series. These

results are supported by the efficiency measure EC of
the CRMSF (Figure 3): manu is the only experiment for
which EC in the sparse network is positive (Figure 3).

With respect to trends, all experiments reduce the
RMSE of the trends (Figure 3). The reduction ranges
from approximately 20 (meta-post and manu) to 43%
(meta-pre). The bias of the trends is smallest for meta-post
and meta-pre. Similar to temperature, homogenization
reduces the variability of the trends. However, the trend
variability in the investigated networks is similar to the
uncertainty of the trend estimated at a station. The results
are therefore not significant.

With regard to the number of detected breakpoints, the
differences between the reference dataset and the sparse
experiments are not consistent among the experiments
(Figure 7). For example, the reference homogeniza-
tion considers the South network to be homogeneous.
In contrast, a total of 11 breakpoints were inserted by
meta-pre in the sparse experiment (4 for meta-post). This
‘over-detection’ by meta-pre and meta-post is the main
reason for the decreased homogeneity mentioned above.
Manu is the only experiments which does not overestimate
the number of breakpoints.

4.2.2. Automatic mode

In both the sparse precipitation and temperature networks,
the efficiency measures EC and ET are negative after apply-
ing HOMER in automatic mode (Figure 3). In contrast to

© 2017 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 4670–4683 (2017)
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Table 2. Percentage of stations for which the temporal consistency (measured with the CRMSE or the CRMSF) of the homogenized
data is improved (+) after homogenization compared to the raw data, for which the CRMSE (CRMSF) remains the same (○), and

for which the data after homogenization is deteriorated (−).

Dense networks (values in %) Sparse networks (values in %)

Reference manu meta-pre auto meta-post manu meta-pre auto

TX
+ 90 83 80 37 63 70 47 47
○ 10 13 0 0 0 7 0 3
− 0 3 20 63 37 23 53 50

TN
+ 97 80 80 33 50 53 37 27
○ 3 7 3 0 0 3 0 0
− 0 13 17 67 50 43 63 73

P
+ 30 15 25 20 28 28 28 2
○ 70 85 48 68 45 68 40 10
− 0 0 28 12 28 5 32 88

the dense temperature networks, there was no systematic
error observed in the sparse networks (Section 4.1.3.),
which explains the partly better performance of the
experiment applied to the sparse networks. However, due
to the large errors in the dense temperature network, the
results for auto are not further discussed here.

5. Discussion

Homogenization methods are mostly developed in areas
of high station densities such as encountered in Europe,

and are normally evaluated under these conditions. This is
for instance the case for the benchmark study of Venema
et al. (2012). However in large parts of the world, the
available measurements are sparse. In the following, the
results of this first investigation on homogenization applied
to networks of low station densities are discussed.

5.1. Homogenizing sparse networks with HOMER

This study demonstrates that HOMER may improve the
quality of temperature and precipitation data in areas of
low station density. The improvements are however small,
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The percentages of stations that improve/deteriorate after homogenization are given in Table 2.

i.e. the CRMSE is reduced by only 5–13% for temper-
ature and by 30% for precipitation data compared to the
raw data. Further, the bias of the average temperature
and precipitation trend was not significantly altered by
homogenization. The main improvement through homog-
enization with regard to trends resulted in a reduction
of the RMSE (50% for temperature and up to 40% for
precipitation). For trend analyses, applying HOMER is
hence beneficial even in low station density networks.
However, the low SNR may impede the detection of rel-
evant breakpoints and may lead to erroneous corrections
of the inserted breakpoints. For example, the systematic
breakpoint that occurred due to the network automation
around 1980 was not coherently detected in the temper-
ature data. This underlines the importance of a careful
station selection for homogenization to avoid simultane-
ous breakpoints (Menne and Williams, 2008; Kuglitsch
et al., 2012). In the Peruvian network, systematic changes
are not known from the past, and so far this problem might
not apply there. However, the issue clearly shows that a
careful measuring strategy is essential.

Comparing the three experiments in interactive mode
leads to the following conclusions: in contrast to our
expectations, the use of metadata (meta-post) for
breakpoint corroboration does not clearly improve
homogenization in sparse networks over purely sta-
tistical homogenization. The experiment manu resulted
in similar results with regard to CRMSE and trends. In
contrast, if metadata is introduced a priori, it is likely that
corrections become erroneous and may ultimately lead
to a deterioration of the data. Such erroneous corrections
might also occur if a combination of different variables
(e.g. maximum, minimum, and mean temperature, as well
as temperature range) are used to determine breakpoints
(e.g. Aguilar et al., 2002). We conclude that in sparse tem-
perature station networks metadata should only be used
to confirm breakpoints with clear statistical evidence, for
instance by adjusting the timing of the occurrence of the
breakpoint. This is even more pronounced in precipitation

networks, where manu is the only experiment that does not
introduce breakpoints to homogeneous time series. It must
however be mentioned that breakpoint detection is gener-
ally ambiguous for precipitation due to the low SNR (e.g.
Venema et al., 2012), and even more so in sparse networks.

In addition we found that the use of HOMER in auto-
matic mode may not be recommended for homogenization.
The errors obtained for auto indicate that this variant in
HOMER still requires optimization.

Regarding the interpretation of the results, we must keep
in mind that the reference used in this study is affected by
errors. Domonkos et al. (2011b) showed that PRODIGE
improves the CRMSE by 70% over the raw data. Com-
pared to the truth (a synthetic dataset), the remaining 30%
of the CRMSE could not be corrected for by PRODIGE.
Due to these errors in the reference, obtaining the same
output by the experiments under evaluation and the ref-
erence is more difficult. Therefore, some uncertainty with
regard to the presented results remains.

5.2. Strategies to improve data quality in countries of
low station density

This study shows that homogenization with HOMER may
improve the quality of sparse temperature and precipitation
datasets, however only if breakpoints are treated conserva-
tively. The improvements of the homogenized over the raw
data are small. These findings are in accordance with Auer
et al. (2005), who state that inhomogeneities may disap-
pear within the noise for station correlations below 0.5.
It is therefore likely that the true number of breakpoints
in Peru is considerably larger than the reported number of
breaks (Section 1) of one breakpoint every 13–20 years.

In order to enable the generation of homogeneous
time series, the issue of the low station density must be
addressed in many parts of the world. While installation
of new stations is very costly, other measures to maximize
benefit from existing resources would be valuable. This
could be achieved for example through: (1) a sound
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data-quality control and correction system to increase
the number of suitable stations for homogenization, (2)
the integration of partner networks in and surrounding a
region, and hence (3) an international sharing of reliable
datasets to improve stations density at the frontiers. Fur-
ther, to improve the data quality and homogenization in the
future, emphasis could be put on (1) regular observer and
maintainer instruction to reduce measurement errors, (2)
setting-up a real-time quality control systems allowing for
immediate intervention in case of measurement errors (for
both conventional and automatic stations), (3) analysis of
parallel measurements (if existing) to specifically quantify
the influence of reported breakpoints, and (4) setting-up a
metadata collection and storage systems.

Since metadata gives confidence in breakpoint detec-
tion, it would be beneficial to gather information from the
past. Possible approaches to recover station histories are
station visits, observer questioning, and examination of
original data sheets for comments and annotations, and
a systematic compilation of information available at the
meteorological offices. Some of these approaches (e.g.
implementation of a data-quality control system, analysis
of parallel measurements) are currently implemented at
SENAMHI Peru.

In regions of sparse station networks, homogenization
would certainly benefit from an increase in the station
density. In the context of installing new stations (nowadays
often automatic weather stations), reflections on the net-
work design should be made. This includes: (1) avoiding
simultaneous breakpoints for homogenization (Menne and
Williams, 2008; Kuglitsch et al., 2012), (2) installation
of parallel measurements, (3) ensuring measurement site
representativity (Leroy, 1998), and (4) ensuring the better
representation of the climatic factors encountered in the
regions.

Moreover, in Switzerland it has proven useful to define
so-called important climate observing stations (Begert
et al., 2007). These stations are climatologically represen-
tative for a greater area, and jointly represent the different
climates of Switzerland. In regions of low density net-
works, these stations might consist of the best-quality
stations that are representative for a greater area. These
stations could be prioritized with respect to station main-
tenance, observer instruction, and metadata collection.
Further, they should be kept as homogeneous as possible
(Aguilar et al., 2003) to serve as reliable references for
climate studies.

Further, some issues regarding homogenization in gen-
eral should be addressed. HOMER has not been validated
against a synthetic dataset yet. A proper evaluation of
HOMER, especially of the joint-detection method, is
required. Since many networks worldwide have lower
correlation than networks in Western Europe, there is a
need for a method inter-comparison focusing on sparse
station networks. Other methods could perform better than
HOMER in sparse networks. For example, the use of sta-
tistical methods not relying on metadata (e.g. PENHOM;
Kuglitsch et al., 2009) should be investigated. In addition,
there is a need to evaluate homogenization methods under

tropical conditions. For example, the mainly convective
precipitation regimes in the tropics might have an influence
on the performance of relative homogenization methods
since these precipitation events are likely to increase the
noise in the difference series. In addition, the frequency
of breakpoints in Switzerland (Kuglitsch et al., 2012) is
clearly lower than in Peru. Small shifts in a time series act
as a kind of noise, which substantially lowers the detection
skill of larger shifts (Domonkos et al., 2011b). Inclusion
of artificial inhomogeneities in the Swiss dataset, or an
evaluation of HOMER on a synthetic dataset representing
the conditions in Peru could shed light on the influence of
such issues on homogenization.

6. Conclusions

Since the performance of homogenization depends to a
large degree on factors such as breakpoint magnitudes and
frequency, the results of this study cannot so easily be
generalized. Nevertheless, the following conclusions may
be drawn:

• In sparse networks, potential breakpoints should be
inserted conservatively. Otherwise, there is a risk of
harmful corrections due to the low signal-to-noise ratio.
Metadata should only be used to confirm and adjust the
exact timing of breakpoints.

• The performance of homogenization declines sharply in
sparse compared to dense station networks. Neverthe-
less, homogenization may increase the trend accuracy
in sparse networks even if the temporal consistency is
reduced at the same time.

• The low signal-to-noise ratio in sparse networks reduces
the number of statistically detected breakpoints by
around 25 to 40% for temperature, and by 50% for pre-
cipitation compared to a dense network.

• Application of HOMER in automatic mode is not rec-
ommended.

• Low station density and poor correlation are serious
hindrances to generating homogeneous series. Other
approaches, such as integrating partner networks, a
comprehensive quality control, improved station main-
tenance, among others, should be addressed to increase
the quality of climate data in region of low stations
densities.
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R, Aguilar E, Guijarro J, Vertačnik G, Klancar M, Dubuisson B,
Stepanek P. 2013. HOMER: a homogenization software – methods
and applications. Q. J. Hung. Meteor. Serv. 117: 47–67.

Picard F, Lebarbier E, Hoebeke M, Rigaill G, Thiam B, Robin S.
2011. Joint segmentation, calling and normalization of multiple CGH
profiles. Biostatistics 12: 413–428.

Peterson TC, Easterling DR. 1994. Creation of homogeneous composite
climatological benchmark series. Int. J. Climatol. 14: 671–679.

Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer
N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomen-
virta H, Mestre O, Szentimrey T, Salinger J, Forland EJ, Hassen-Bauer
I, Alexandersson H, Jones P, Parker D. 1998. Homogeneity adjust-
ments of in situ atmospheric climate data: a review. Int. J. Climatol.
18: 1493–1517.

R Development Core Team. 2014. R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing:
Vienna, Austria, http://www.Rproject.org/.

Reeves J, Chen J, Wang XL, Lund R, Lu Q. 2007. A review and
comparison of changepoint detection techniques for climate data. J.
Appl. Meteor. Climatol. 46: 900–915.

Rosas G, Gubler S, Oria C, Acuña D, van Geijtenbeek D, Jacques
M, Konzelmann T, Lavado W, Matos A, Mauchle F, Rohrer M,
Rossa A, Scherrer SC, Valdez M, Valverde M, Villar G, Villegas E.
2016. Towards implementing climate services in Peru – The project
CLIMANDES. Clim. Serv. 4: 30–41.

© 2017 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. 37: 4670–4683 (2017)
on behalf of the Royal Meteorological Society.

https://doi.org/10.1002/joc.1377
https://doi.org/10.1002/joc.1377
https://doi.org/10.1007/978-3-319-19042-6&uscore;4
https://doi.org/10.1029/2008JD011606
https://doi.org/10.1029/2008JD011606
https://doi.org/10.1029/2012JD017729
https://doi.org/10.1002/joc.4459
https://doi.org/10.4236/acs.2014.41010
https://doi.org/10.4236/acs.2014.41010
https://doi.org/10.1002/joc.4522
http://www.Rproject.org/


STATION DENSITY AND HOMOGENIZATION 4683

Salzmann N, Huggel C, Calanca P, Díaz A, Jonas T, Jurt C, Konzelmann
T, Lagos P, Rohrer M, Silverio W, Zappa M. 2009. Integrated assess-
ment and adaptation to climate change impacts in the Peruvian Andes.
Adv. Geosci. 22: 35–39.

Seiler C, Hutjes RWA, Kabat P. 2012. Climate variability and trends in
Bolivia. J. Appl. Meteorol. Climatol. 52: 130–146.

Struyf A, Hubert M, Rousseeuw PJ. 1996. Clustering in an
object-oriented environment. J. Stat. Softw. 1: 33.

Struyf A, Hubert M, Rousseeuw PJ. 1997. Integrating robust clustering
techniques in S-PLUS. Comput. Stat. Data Anal. 26: 17–37.

Toreti A, Kuglitsch F, Xoplaki E, Luterbacher J, Wanner H. 2010. A
novel method for the homogenization of daily temperature series and
its relevance for climate change analysis. J. Clim. 25: 5325–5331.

Toreti A, Kuglitsch FG, Xoplaki E, Luterbacher J. 2011. A novel
approach for the detection of inhomogeneities affecting climate time
series. J. Appl. Meteorol. Climatol. 51: 317–326.

Trewin B. 2010. Exposure, instrumentation, and observing practice
effects on land temperature measurements. Wiley Interdiscip. Rev.:
Clim. Change 1(4): 490–506. https://doi.org/10.1002/wcc.46.

Van Engelen A, Klein Tank A, Van de Schrier G, Klok L. 2008. European
Climate Assessment & Dataset (ECA&D), Towards an operational
system for assessing observed changes in climate extremes. KNMI
Report.

Venema VKC, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos
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