331 research outputs found
PRINCIPLE COMPONENTS ANALYSIS TO CHARACTERIZE STRESS, PERFORMANCE, AND INJURY IN FEMALE COLLEGIATE SOCCER PLAYERS
Stress created by training is needed to elicit physiological adaptations to increase performance, however, a stress threshold exists. We assessed 19 female collegiate soccer players during an eleven week preparatory phase and measured stress, performance, and injury variables. We used a principal component analysis to determine relationships among stress, performance, and injury. We found a weak, negative relationship between practice stress and anaerobic stress (r = -0.107, p = 0.05), a positive relationship between anaerobic stress and movement risk of injury (r = 0.459,
Implementation of a process-based catchment model in a poorly gauged, highly glacierized Himalayan headwater
The paper presents a catchment modeling approach for remote glacierized
Himalayan catchments. The distributed catchment model TAC<sup>D</sup>, which is
widely based on the HBV model, was further developed for the application in
highly glacierized catchments on a daily timestep and applied to the
Nepalese Himalayan headwater Langtang Khola (360 km<sup>2</sup>). Low laying
reference stations are taken for temperature extrapolation applying a second
order polynomial function. Probability based statistical methods enable
bridging data gaps in daily precipitation time series and the redistribution
of cumulated precipitation sums over the previous days. Snow and ice melt
was calculated in a distributed way based on the temperature-index method
employing calculated daily potential sunshine durations. Different melting
conditions of snow and ice and melting of ice under debris layers were
considered. The spatial delineation of hydrological response units was
achieved by taking topographic and physiographic information from maps and
satellite images into account, and enabled to incorporate process knowledge
into the model. Simulation results demonstrated that the model is able to
simulate daily discharge for a period of 10 years and point glacier mass
balances observed in the research area with an adequate reliability. The
simple but robust data pre-processing and modeling approach enables the
determination of the components of the water balance of a remote, data
scarce catchment with a minimum of input data
Robust Chauvenet Outlier Rejection
Sigma clipping is commonly used in astronomy for outlier rejection, but the
number of standard deviations beyond which one should clip data from a sample
ultimately depends on the size of the sample. Chauvenet rejection is one of the
oldest, and simplest, ways to account for this, but, like sigma clipping,
depends on the sample's mean and standard deviation, neither of which are
robust quantities: Both are easily contaminated by the very outliers they are
being used to reject. Many, more robust measures of central tendency, and of
sample deviation, exist, but each has a tradeoff with precision. Here, we
demonstrate that outlier rejection can be both very robust and very precise if
decreasingly robust but increasingly precise techniques are applied in
sequence. To this end, we present a variation on Chauvenet rejection that we
call "robust" Chauvenet rejection (RCR), which uses three decreasingly
robust/increasingly precise measures of central tendency, and four decreasingly
robust/increasingly precise measures of sample deviation. We show this
sequential approach to be very effective for a wide variety of contaminant
types, even when a significant -- even dominant -- fraction of the sample is
contaminated, and especially when the contaminants are strong. Furthermore, we
have developed a bulk-rejection variant, to significantly decrease computing
times, and RCR can be applied both to weighted data, and when fitting
parameterized models to data. We present aperture photometry in a contaminated,
crowded field as an example. RCR may be used by anyone at
https://skynet.unc.edu/rcr, and source code is available there as well.Comment: 62 pages, 48 figures, 7 tables, accepted for publication in ApJ
Shear-Flow Driven Current Filamentation: Two-Dimensional Magnetohydrodynamic Simulations
The process of current filamentation in permanently externally driven,
initially globally ideal plasmas is investigated by means of two-dimensional
Magnetohydrodynamic (MHD)-simulations. This situation is typical for
astrophysical systems like jets, the interstellar and intergalactic medium
where the dynamics is dominated by external forces. Two different cases are
studied. In one case, the system is ideal permanently and dissipative processes
are excluded. In the second case, a system with a current density dependent
resistivity is considered. This resistivity is switched on self-consistently in
current filaments and allows for local dissipation due to magnetic
reconnection. Thus one finds tearing of current filaments and, besides, merging
of filaments due to coalescence instabilities. Energy input and dissipation
finally balance each other and the system reaches a state of constant magnetic
energy in time.Comment: 32 Pages, 13 Figures. accepted, to appear in Physics of Plasmas
(049012
Infrared seeded parametric four-wave mixing for sensitive detection of molecules
We have developed a sensitive resonant four-wave mixing technique based on two-photon parametric four-wave mixing with the addition of a phase matched ''seeder'' field. Generation of the seeder field via the same four-wave mixing process in a high pressure cell enables automatic phase matching to be achieved in a low pressure sample cell. This arrangement facilitates sensitive detection of complex molecular spectra by simply tuning the pump laser. We demonstrate the technique with the detection of nitric oxide down to concentrations more than 4 orders of magnitude below the capability of parametric four-wave mixing alone, with an estimated detection threshold of 10(12) molecules/cm(3)
<i>USP27X </i>variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p
<i>USP27X </i>variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p
USP27X variants underlying X-linked intellectual disability disrupt protein function via distinct mechanisms
Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.</p
- …