63 research outputs found

    Time-domain Raman analytical forward solvers

    Get PDF
    A set of time-domain analytical forward solvers for Raman signals detected from homogeneous diffusive media is presented. The time-domain solvers have been developed for two geometries: the parallelepiped and the finite cylinder. The potential presence of a background fluorescence emission, contaminating the Raman signal, has also been taken into account. All the solvers have been obtained as solutions of the time dependent diffusion equation. The validation of the solvers has been performed by means of comparisons with the results of "gold standard" Monte Carlo simulations. These forward solvers provide an accurate tool to explore the information content encoded in the time-resolved Raman measurements

    Solid phantom recipe for diffuse optics in biophotonics applications: a step towards anatomically correct 3D tissue phantoms

    Get PDF
    We present a tissue mimicking optical phantom recipe to create robust well tested solid phantoms. The recipe consists of black silicone pigment (absorber), silica microspheres (scatterer) and silicone rubber (SiliGlass, bulk material). The phantom recipe was characterized over a broadband spectrum (600-1100 nm) for a wide range of optical properties (absorption 0.1-1 cm−1, reduced scattering 5-25 cm−1) that are relevant to human organs. The results of linearity show a proper scaling of optical properties as well as the absence of coupling between the absorber and scatterer at different concentrations. A reproducibility of 4% among different preparations was obtained, with a similar grade of spatial homogeneity. Finally, a 3D non-scattering mock-up phantom of an infant torso made with the same recipe bulk material (SiliGlass) was presented to project the futuristic aspect of our work that is 3D printing human organs of biomedical relevance

    Diffuse optical characterization of collagen absorption from 500 to 1700 nm

    Get PDF
    Reduction in scattering, high absorption, and spectral features of tissue constituents above 1000 nm could help in gaining higher spatial resolution, penetration depth, and specificity for in vivo studies, opening possibilities of near-infrared diffuse optics in tissue diagnosis. We present the characterization of collagen absorption over a broadband range (500 to 1700 nm) and compare it with spectra presented in the literature. Measurements were performed using a time-domain diffuse optical technique. The spectrum was extracted by carefully accounting for various spectral distortion effects, due to sample and system properties. The contribution of several tissue constituents (water, lipid, collagen, oxy, and deoxy-hemoglobin) to the absorption properties of a collagen-rich in vivo bone location, such as radius distal in the 500-to 1700-nm wavelength region, is also discussed, suggesting bone diagnostics as a potential area of interest

    Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media

    Get PDF
    We present a new technique, frequency offset Raman spectroscopy (FORS), to probe Raman spectra of diffusive media in depth. The proposed methodology obtains depth sensitivity exploiting changes in optical properties (absorption and scattering) with excitation wavelengths. The approach was demonstrated experimentally on a two-layer tissue phantom and compared with the already consolidated spatially offset Raman spectroscopy (SORS) technique. FORS attains a similar enhancement of signal from deep layers as SORS, namely 2.81 against 2.62, while the combined hybrid FORS-SORS approach leads to a markedly higher 6.0 enhancement. Differences and analogies between FORS and SORS are discussed, suggesting FORS as an additional or complementary approach for probing heterogeneous media such as biological tissues in depth

    Broadband extraction of tissue optical properties using a portable hybrid time-resolved continuous wave instrumentation: characterization of ex vivo organs

    Get PDF
    Successful demonstration of a unique portable CW - TDDO S system for accurate and multiwavelength retrieval of tissue optical properties. Determining these properties has potential to improve the diagnosis and treatment outcomes in clinical and sports settings

    Design and construction of a solid switchable phantom for diffuse optical imaging

    Get PDF
    We propose a simple and reliable solid phantom for mimicking realistic localized absorption changes within a diffusive medium. The phantom is based on a solid matrix holding a movable black inclusion embedded in a rod. Translating the rod parallel to the phantom surface, the inhomogeneity can be positioned beneath the source-detector pair (perturbed case) or far from it (unperturbed case). Examples of time-resolved transmittance measurements and time-resolved reflectance scans are shown to demonstrate the properties and the versatility of the phantom

    Biophotonics box: educational kit for multidisciplinary outreach activities in optics and photonics

    Get PDF
    The biophotonics box enables multidisciplinary/interdisciplinary and self-paced learning with at-home experiments using low-resource components. Experiments can increase the interest of students in STEM subjects by emphasizing the real-life applications in biology and medicine
    • …
    corecore