7 research outputs found

    Microbial conversion of sewage sludge into raw material for PHA plastic : In: Biocircular economy in PÀijÀt-HÀme. Examples from 2020s

    Get PDF
    Biopolymeerit, kuten polyhydroksyalkanoaatit (PHA), ovat tÀrkeitÀ vaihtoehtoja öljyperÀisille polymeereille, koska ne ovat 100 % biohajoavia, silti kestÀviÀ ja kierrÀttÀvÀt hiiltÀ. Niille on ympÀristöystÀvÀllisiÀ valmistusprosesseja sekÀ valtava mÀÀrÀ eri kÀyttöalueita kulutushyödykkeistÀ lÀÀketieteeseen

    Sonication Effects on Atrazine Dissipation in Vadose Zone Sediment Slurries

    Get PDF
    Herbicide atrazine easily leaches to groundwater, where it is persistent. We studied whether sonication accelerates atrazine dissipation (100 mg·L−1) in vadose zone sediment slurries. Sediments were from 11.3 to 14.6 m depths in an atrazine-contaminated groundwater area. The slurries and autoclave-sterilized slurries were sonicated (bath, 43 kHz, 320 W) for 0, 5, 10, 20, or 30 min once/twice a day, and atrazine concentrations were followed. Atrazine concentrations raised in the sterilized slurries sonicated twice a day for 10 min (86.0 ± 7.7 mg·L−1), while they remained low in the slurries (56.6 ± 10.9 mg·L−1) due to microbial degradation. Twice a day sonications for 20–30 min did not enhance microbial atrazine degradation. Chemical dissipation may have occurred in the sterilized slurries sonicated twice a day for 30 min. However, sonication did not decrease atrazine concentrations below those in the non-sonicated slurries (55.1 ± 7.8 mg·L−1) and sterilized slurries (67.1 ± 7.9 mg·L−1). Atrazine concentrations in the sterilized slurries were higher than in the slurries, indicating changes in sediment structure and adsorption due to autoclaving. Sonication parameters needed for releasing atrazine from interactions with particles may be close to those damaging microbial cells. This suggests difïŹculties in enhancing microbial atrazine degradation by sonication, though chemical degradation can be enhanced.Peer reviewe

    Exposure to bacterial and fungal bioaerosols in facilities processing biodegradable waste

    Get PDF
    The aim of the study was to determine the exposure of workers within biodegradable waste processing facilities to bacteria and fungi to identify any exposures of potential concern to health. Occupational measurements were performed in six composting and three bioenergy (bioethanol or methane/biogas) producing facilities. Bioaerosols were measured from breathing zones with Button aerosol or open face cassette filter samplers, and swab specimens were taken from the nasal mucous membranes of the workers. Aspergillus fumigatus, Bacillus cereus group, Campylobacter spp., Salmonella spp., Streptomyces spp., and Yersinia spp. were determined by real-time polymerase chain reaction (qPCR). A. fumigatus, and mesophilic and thermophilic actinobacteria were also cultivated fromfilters. Bacterial airborne endotoxins collected by IOM samplers were analyzed using a Limulus assay.mBioaerosol levels were high, especially in composting compared to bioenergy producing facilities. Endotoxin concentrations in composting often exceeded the occupational exposure value of 90 EU/m3, which may be harmful to the health. In addition to endotoxins, the concentrations of A. fumigatus (up to 2.4 × 105 copies/m3) and actinobacteria/Streptomyces spp. (up to 1.6 × 106 copies/m3) in the air of composting facilities were often high. Microbial and endotoxin concentrations were typically highest in waste reception and pre-treatment, equal or decreased during processing and handling of treated waste, and lowest in wheel loader cabins and control rooms/outdoors. Still, the parameters measured in wheel loader cabins were often higher than in the control sites, which suggests that the use of preventive measures could be improved. B. cereus group, Salmonella spp., and Yersinia spp. were rarely detected in bioaerosols or nasal swabs. Although Campylobacter spp. DNA was rarely detected in air, as a new finding, Campylobacter ureolyticus DNA was frequently detected in the nasal mucous membranes of workers, based on partial 16S rDNA sequencing. Moreover, especially A. fumigatus and C. ureolyticus spp. DNA concentrations in swabs after the work shift were significantly higher than before the shift, which indicates their inhalation or growth during the work shift. Microbial qPCR analysis of bioaerosols and swab samples of nasal mucosa allowed measuring exposure in various work operations and during the work shift, identifying problems for health risk assessment to improve working conditions, and evaluating the eectiveness of preventive measures and personal protection of workers.Peer reviewe

    Influence of organic matter, nutrients, and cyclodextrin on microbial and chemical herbicide and degradate dissipation in subsurface sediment slurries

    Get PDF
    Pesticides leaching from soil to surface and groundwater are a global threat for drinking water safety, as no cleaning methods occur for groundwater environment. We examined whether peat, compost-peat-sand (CPS) mixture, NH4NO3, NH4NO3 with sodium citrate (Na-citrate), and the surfactant methyl-beta-cyclodextrin additions enhance atrazine, simazine, hexazinone, dichlobenil, and the degradate 2,6-dichlorobenzamide (BAM) dissipations in sediment slurries under aerobic and anaerobic conditions, with sterilized controls. The vadose zone sediment cores were drilled from a depth of 11.3-14.6m in an herbicide-contaminated groundwater area. The peat and CPS enhanced chemical atrazine and simazine dissipation, and the peat enhanced chemical hexazinone dissipation, all oxygen-independently. Dichlobenil dissipated under all conditions, while BAM dissipation was fairly slow and half-lives could not be calculated. The chemical dissipation rates could be associated with the chemical structures and properties of the herbicides, and additive compositions, not with pH. Microbial atrazine degradation was only observed in the Pseudomonas sp. ADP amended slurries, although the sediment slurries were known to contain atrazine-degrading microorganisms. The bioavailability of atrazine in the water phase seemed to be limited, which could be due to complex formation with organic and inorganic colloids. Atrazine degradation by indigenous microbes could not be stimulated by the surfactant methyl-beta-cyclodextrin, or by the additives NH4NO3 and NH4NO3 with Na-citrate, although the nitrogen additives increased microbial growth. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe
    corecore