1,047 research outputs found

    Mesoscopic effects in superconductor-ferromagnet-superconductor junctions

    Full text link
    We show that at zero temperature the supercurrent through the superconductor - ferromagnetic metal - superconductor junctions does not decay exponentially with the thickness LL of the junction. At large LL it has a random sample-specific sign which can change with a change in temperature. In the case of mesoscopic junctions the phase of the order parameter in the ground state is a random sample-specific quantity. In the case of junctions of large area the ground state phase difference is ±π/2\pm \pi/2.Comment: 4 pages, 1 figur

    Rashba spin-orbit coupling and spin precession in carbon nanotubes

    Get PDF
    The Rashba spin-orbit coupling in carbon nanotubes and its effect on spin-dependent transport properties are analyzed theoretically. We focus on clean non-interacting nanotubes with tunable number of subbands NN. The peculiar band structure is shown to allow in principle for Datta-Das oscillatory behavior in the tunneling magnetoresistance as a function of gate voltage, despite the presence of multiple bands. We discuss the conditions for observing Datta-Das oscillations in carbon nanotubes.Comment: 12 pages, published versio

    Theoretical description of the ferromagnetic π\pi -junctions near the critical temperature

    Full text link
    The theory of ferromagnetic Pi-junction near the critical temperature is presented. It is demonstrated that in the dirty limit the modified Usadel equation adequately describes the proximity effect in ferromagnets. To provide the description of an experimentally relevant situation, oscillations of the Josephson critical current are calculated as a function of ferromagnetic layer thickness for different transparencies of the superconductor-ferromagnet interfaces.Comment: 12 pages, 4 figures, submitted to Phys. Rev.

    Superconducting crossed correlations in ferromagnets: implications for thermodynamics and quantum transport

    Full text link
    It is demonstrated that non local Cooper pairs can propagate in ferromagnetic electrodes having an opposite spin orientation. In the presence of such crossed correlations, the superconducting gap is found to depend explicitly on the relative orientation of the ferromagnetic electrodes. Non local Cooper pairs can in principle be probed with dc-transport. With two ferromagnetic electrodes, we propose a ``quantum switch'' that can be used to detect correlated pairs of electrons. With three or more ferromagnetic electrodes, the Cooper pair-like state is a linear superposition of Cooper pairs which could be detected in dc-transport. The effect also induces an enhancement of the ferromagnetic proximity effect on the basis of crossed superconducting correlations propagating along domain walls.Comment: 4 pages, RevTe

    Critical temperature of superconductor/ferromagnet bilayers

    Full text link
    Superconductor/ferromagnet bilayers are known to exhibit nontrivial dependence of the critical temperature T_c on the thickness d_f of the ferromagnetic layer. We develop a general method for investigation of T_c as a function of the bilayer's parameters. It is shown that interference of quasiparticles makes T_c(d_f) a nonmonotonic function. The results are in good agreement with experiment. Our method also applies to multilayered structures.Comment: 4 pages, 2 EPS figures; the style file jetpl.cls is included. Version 2: typos correcte

    Composite excitation of Josephson phase and spin waves in Josephson junctions with ferromagnetic insulator

    Full text link
    Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled with spin-waves in FI are calculated by combining Maxwell and Landau-Lifshitz-Gilbert equations. In the S/FI/S junction, it is found that the current-voltage (I-V) characteristic shows two resonant peaks. Voltages at the resonant peaks are obtained as a function of the normal modes of EM field, which indicates a composite excitation of the EM field and spin-waves in the S/FI/S junction. We also examine another type of junction, in which a nonmagnetic insulator (I) is located at one of interfaces between S and FI. In such a S/I/FI/S junction, three resonant peaks appear in the I-V curve, since the Josephson-phase couples to the EM field in the I layer.Comment: 16 pages, 5 figure

    Thermodynamic properties of ferromagnetic/superconductor/ferromagnetic nanostructures

    Full text link
    The theoretical description of the thermodynamic properties of ferromagnetic/superconductor/ferromagnetic (F/S/F) systems of nanoscopic scale is proposed. Their superconducting characteristics strongly depend on the mutual orientation of the ferromagnetic layers. In addition, depending on the transparency of S/F interfaces, the superconducting critical temperature can exhibit four different types of dependences on the thickness of the F-layer. The obtained results permit to give some practical recommendations for the spin-valve effect experimental observation. In this spin-valve sandwich, we also expect a spontaneous transition from parallel to anti-parallel ferromagnetic moment orientation, due to the gain in the superconducting condensation energy.Comment: 20 pages, 5 figures, submitted to PR

    Local density of states in superconductor-strong ferromagnet structures

    Full text link
    We study the dependence of the local density of states (LDOS) on coordinates for a superconductor-ferromagnet (S/F) bilayer and a S/F/S structure assuming that the exchange energy h in the ferromagnet is sufficiently large: >>1,% h\tau >>1, where τ\tau is the elastic relaxation time. This limit cannot be described by the Usadel equation and we solve the more general Eilenberger equation. We demonstrate that, in the main approximation in the parameter (hτ)1% (h\tau)^{-1}, the proximity effect does not lead to a modification of the LDOS in the S/F system and a non-trivial dependence on coordinates shows up in next orders in (hτ)1.(h\tau) ^{-1}. In the S/F/S sandwich the correction to the LDOS is nonzero in the main approximation and depends on the phase difference between the superconductors. We also calculate the superconducting critical temperature TcT_{c} for the bilayered system and show that it does not depend on the exchange energy of the ferromagnet in the limit of large h and a thick F layer.Comment: 9 pages, 5 figure
    corecore