69 research outputs found

    Continuous infusion of an agonist of the tumor necrosis factor receptor 2 in the spinal cord improves recovery after traumatic contusive injury.

    Get PDF
    AimThe activation of the TNFR2 receptor is beneficial in several pathologies of the central nervous system, and this study examines whether it can ameliorate the recovery process following spinal cord injury.MethodsEHD2-sc-mTNFR2 , an agonist specific for TNFR2, was used to treat neurons exposed to high levels of glutamate in vitro. In vivo, it was infused directly to the spinal cord via osmotic pumps immediately after a contusion to the cord at the T9 level. Locomotion behavior was assessed for 6 weeks, and the tissue was analyzed (lesion size, RNA and protein expression, cell death) after injury. Somatosensory evoked potentials were also measured in response to hindlimb stimulation.ResultsThe activation of TNFR2 protected neurons from glutamate-mediated excitotoxicity through the activation of phosphoinositide-3 kinase gamma in vitro and improved the locomotion of animals following spinal cord injury. The extent of the injury was not affected by infusing EHD2-sc-mTNFR2 , but higher levels of neurofilament H and 2', 3'-cyclic-nucleotide 3'-phosphodiesterase were observed 6 weeks after the injury. Finally, the activation of TNFR2 after injury increased the neural response recorded in the cortex following hindlimb stimulation.ConclusionThe activation of TNFR2 in the spinal cord following contusive injury leads to enhanced locomotion and better cortical responses to hindlimb stimulation

    Phenocopy – A Strategy to Qualify Chemical Compounds during Hit-to-Lead and/or Lead Optimization

    Get PDF
    A phenocopy is defined as an environmentally induced phenotype of one individual which is identical to the genotype-determined phenotype of another individual. The phenocopy phenomenon has been translated to the drug discovery process as phenotypes produced by the treatment of biological systems with new chemical entities (NCE) may resemble environmentally induced phenotypic modifications. Various new chemical entities exerting inhibition of the kinase activity of Transforming Growth Factor β Receptor I (TGF-βR1) were qualified by high-throughput RNA expression profiling. This chemical genomics approach resulted in a precise time-dependent insight to the TGF-β biology and allowed furthermore a comprehensive analysis of each NCE's off-target effects. The evaluation of off-target effects by the phenocopy approach allows a more accurate and integrated view on optimized compounds, supplementing classical biological evaluation parameters such as potency and selectivity. It has therefore the potential to become a novel method for ranking compounds during various drug discovery phases

    Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids

    Get PDF
    The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated

    The TNFR1 antagonist Atrosimab reduces neuronal loss, glial activation and memory deficits in an acute mouse model of neurodegeneration

    Get PDF
    Abstract Tumor necrosis factor alpha (TNF-α) and its key role in modulating immune responses has been widely recognized as a therapeutic target for inflammatory and neurodegenerative diseases. Even though inhibition of TNF-α is beneficial for the treatment of certain inflammatory diseases, total neutralization of TNF-α largely failed in the treatment of neurodegenerative diseases. TNF-α exerts distinct functions depending on interaction with its two TNF receptors, whereby TNF receptor 1 (TNFR1) is associated with neuroinflammation and apoptosis and TNF receptor 2 (TNFR2) with neuroprotection and immune regulation. Here, we investigated the effect of administering the TNFR1-specific antagonist Atrosimab, as strategy to block TNFR1 signaling while maintaining TNFR2 signaling unaltered, in an acute mouse model for neurodegeneration. In this model, a NMDA-induced lesion that mimics various hallmarks of neurodegenerative diseases, such as memory loss and cell death, was created in the nucleus basalis magnocellularis and Atrosimab or control protein was administered centrally. We showed that Atrosimab attenuated cognitive impairments and reduced neuroinflammation and neuronal cell death. Our results demonstrate that Atrosimab is effective in ameliorating disease symptoms in an acute neurodegenerative mouse model. Altogether, our study indicates that Atrosimab may be a promising candidate for the development of a therapeutic strategy for the treatment of neurodegenerative diseases

    Exogenous activation of tumor necrosis factor receptor 2 promotes recovery from sensory and motor disease in a model of multiple sclerosis

    Get PDF
    Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that promotes immune modulation and tissue regeneration and is recognized as a potential therapeutic target for multiple sclerosis (MS). However, TNFR2 also contributes to T effector cell function and macrophage-TNFR2 recently was shown to promote disease development in the experimental autoimmune encephalomyelitis (EAE) model of MS. We here demonstrate that systemic administration of a TNFR2 agonist alleviates peripheral and central inflammation, and reduces demyelination and neurodegeneration, indicating that protective signals induced by TNFR2 exceed potential pathogenic TNFR2-dependent responses. Our behavioral data show that systemic treatment of female EAE mice with a TNFR2 agonist is therapeutic on motor symptoms and promotes long-term recovery from neuropathic pain. Mechanistically, our data indicate that TNFR2 agonist treatment follows a dual mode of action and promotes both suppression of CNS autoimmunity and remyelination. Strategies based on the concept of exogenous activation of TNFR2 therefore hold great promise as a new therapeutic approach to treat motor and sensory disease in MS as well as other inflammatory diseases or neuropathic pain conditions

    Focal adhesion kinase plays a dual role in TRAIL resistance and metastatic outgrowth of malignant melanoma

    Get PDF
    Despite remarkable advances in therapeutic interventions, malignant melanoma (MM) remains a life-threating disease. Following high initial response rates to targeted kinase-inhibition metastases quickly acquire resistance and present with enhanced tumor progression and invasion, demanding alternative treatment options. We show 2nd generation hexameric TRAIL-receptor-agonist IZI1551 (IZI) to effectively induce apoptosis in MM cells irrespective of the intrinsic BRAF/NRAS mutation status. Conditioning to the EC50 dose of IZI converted the phenotype of IZI-sensitive parental MM cells into a fast proliferating and invasive, IZI-resistant metastasis. Mechanistically, we identified focal adhesion kinase (FAK) to play a dual role in phenotype-switching. In the cytosol, activated FAK triggers survival pathways in a PI3K- and MAPK-dependent manner. In the nucleus, the FERM domain of FAK prevents activation of wtp53, as being expressed in the majority of MM, and consequently intrinsic apoptosis. Caspase-8-mediated cleavage of FAK as well as FAK knockdown, and pharmacological inhibition, respectively, reverted the metastatic phenotype-switch and restored IZI responsiveness. FAK inhibition also re-sensitized MM cells isolated from patient metastasis that had relapsed from targeted kinase inhibition to cell death, irrespective of the intrinsic BRAF/NRAS mutation status. Hence, FAK-inhibition alone or in combination with 2nd generation TRAIL-receptor agonists may be recommended for treatment of initially resistant and relapsed MM, respectively

    Murine endoglin-specific single-chain Fv fragments for the analysis of vascular targeting strategies in mice

    No full text
    Endoglin has been identified as a promising cell surface antigen for vascular targeting approaches in cancer therapy, e.g. employing antibody molecules as targeting moieties. However, in vivo analysis of such strategies in mouse models requires antibodies recognizing endoglin on mouse endothelial cells. Here we describe the isolation of single-chain Fv fragments (scFvs) from phage display libraries, which bind to the extracellular region of mouse endoglin. One of these clones, scFv mE12, showed strong (Kd = 11 nM) and selective binding to purified endoglin and also to the endoglin-expressing mouse endothelioma cell line eEnd.2. This antibody recognized a linear epitope located in the N-terminal region (aa 27-361) of endoglin. Cell binding was further increased by generating a bivalent scFv-Fc fusion protein composed of scFv mE12 and the human γ1 Fc part. Moreover, scFv mE12 was endowed with an additional cysteine residue in the linker region and applied for the generation of anti-endoglin scFv immunoliposomes capable of selectively binding to endoglin-expressing cells. Thus, anti-mouse endoglin scFv mE12 should be useful to analyze vascular targeting strategies in mice. © 2008 Elsevier B.V. All rights reserved.Peer Reviewe

    Targeting sTNF/TNFR1 Signaling as a New Therapeutic Strategy

    No full text
    Deregulation of the tumor necrosis factor (TNF) plays an important role in the initiation and perpetuation of chronic inflammation and has been implicated in the development of various autoimmune diseases. Accordingly, TNF-inhibitors are successfully used for the treatment of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, total inhibition of TNF can cause severe side effects such as an increased risk of inflammation and reactivation of tuberculosis. This is likely due to the different actions of the two TNF receptors. Whereas TNFR1 predominantly promotes inflammatory signaling pathways, TNFR2 mediates immune modulatory functions and promotes tissue homeostasis and regeneration. Therefore, the specific blockage of TNFR1 signaling, either by direct inhibition with TNFR1-selective antagonists or by targeting soluble TNF, which predominantly activates TNFR1, may prevent the detrimental effects associated with total TNF-inhibitors and constitute a next-generation approach to interfere with TNF

    A Fab-Selective Immunoglobulin-Binding Domain from Streptococcal Protein G with Improved Half-Life Extension Properties.

    No full text
    Half-life extension strategies have gained increasing interest to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Recently, we established an immunoglobulin-binding domain (IgBD) from streptococcal protein G (SpGC3) as module for half-life extension. SpGC3 is capable of binding to the Fc region as well as the CH1 domain of Fab arms under neutral and acidic conditions.Using site-directed mutagenesis, we generated a Fab-selective mutant (SpGC3Fab) to avoid possible interference with the FcRn-mediated recycling process and improved its affinity for mouse and human IgG by site-directed mutagenesis and phage display selections. In mice, this affinity-improved mutant (SpGC3FabRR) conferred prolonged plasma half-lives compared with SpGC3Fab when fused to small recombinant antibody fragments, such as single-chain Fv (scFv) and bispecific single-chain diabody (scDb). Hence, the SpGC3FabRR domain seems to be a suitable fusion partner for the half-life extension of small recombinant therapeutics.The half-life extension properties of SpGC3 can be retained by restricting binding to the Fab fragment of serum immunoglobulins and can be improved by increasing binding activity. The modified SpGC3 module should be suitable to extend the half-life of therapeutic proteins and, thus to improve therapeutic activity

    Influence of antigen density and immunosuppressive factors on tumor-targeted costimulation with antibody-fusion proteins and bispecific antibody-mediated T cell response

    No full text
    Target expression heterogeneity and the presence of an immunosuppressive microenvironment can hamper severely the efficiency of immunotherapeutic approaches. We have analyzed the potential to encounter and overcome such conditions by a combinatory two-target approach involving a bispecific antibody retargeting T cells to tumor cells and tumor-directed antibody-fusion proteins with costimulatory members of the B7 and TNF superfamily. Targeting the tumor-associated antigens EpCAM and EGFR with the bispecific antibody and costimulatory fusion proteins, respectively, we analyzed the impact of target expression and the influence of the immunosuppressive factors IDO, IL-10, TGF-β, PD-1 and CTLA-4 on the targeting-mediated stimulation of T cells. Here, suboptimal activity of the bispecific antibody at diverse EpCAM expression levels could be effectively enhanced by targeting-mediated costimulation by B7.1, 4-1BBL and OX40L in a broad range of EGFR expression levels. Furthermore, the benefit of combined costimulation by B7.1/4-1BBL and 4-1BBL/OX40L was demonstrated. In addition, the expression of immunosuppressive factors was shown in all co-culture settings, where blocking of prominent factors led to synergistic effects with combined costimulation. Thus, targeting-mediated costimulation showed general promise for a broad application covering diverse target expression levels, with the option for further selective enhancement by the identification and blockade of main immunosuppressive factors of the particular tumor environment
    • …
    corecore