8 research outputs found

    Modelling intensive care unit capacity under different epidemiological scenarios of the COVID-19 pandemic in three Western European countries.

    Get PDF
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has placed enormous strain on intensive care units (ICUs) in Europe. Ensuring access to care, irrespective of COVID-19 status, in winter 2020-2021 is essential. METHODS: An integrated model of hospital capacity planning and epidemiological projections of COVID-19 patients is used to estimate the demand for and resultant spare capacity of ICU beds, staff and ventilators under different epidemic scenarios in France, Germany and Italy across the 2020-2021 winter period. The effect of implementing lockdowns triggered by different numbers of COVID-19 patients in ICUs under varying levels of effectiveness is examined, using a 'dual-demand' (COVID-19 and non-COVID-19) patient model. RESULTS: Without sufficient mitigation, we estimate that COVID-19 ICU patient numbers will exceed those seen in the first peak, resulting in substantial capacity deficits, with beds being consistently found to be the most constrained resource. Reactive lockdowns could lead to large improvements in ICU capacity during the winter season, with pressure being most effectively alleviated when lockdown is triggered early and sustained under a higher level of suppression. The success of such interventions also depends on baseline bed numbers and average non-COVID-19 patient occupancy. CONCLUSION: Reductions in capacity deficits under different scenarios must be weighed against the feasibility and drawbacks of further lockdowns. Careful, continuous decision-making by national policymakers will be required across the winter period 2020-2021

    Optimising the deployment of vector control tools against malaria: a data-informed modelling study

    Get PDF
    Background Concern that insecticide resistant mosquitoes are threatening malaria control has driven the development of new types of insecticide treated nets (ITNs) and indoor residual spraying (IRS) of insecticide. Malaria control programmes have a choice of vector control interventions although it is unclear which controls should be used to combat the disease. The study aimed at producing a framework to easily compare the public health impact and cost-effectiveness of different malaria prevention measures currently in widespread use. Methods We used published data from experimental hut trials conducted across Africa to characterise the entomological effect of pyrethroid-only ITNs versus ITNs combining a pyrethroid insecticide with the synergist piperonyl butoxide (PBO). We use these estimates to parameterise a dynamic mathematical model of Plasmodium falciparum malaria which is validated for two sites by comparing simulated results to empirical data from randomised control trials (RCTs) in Tanzania and Uganda. We extrapolated model simulations for a series of potential scenarios likely across the sub-Saharan African region and include results in an online tool (Malaria INtervention Tool [MINT]) that aims to identify optimum vector control intervention packages for scenarios with varying budget, price, entomological and epidemiological factors. Findings Our model indicates that switching from pyrethroid-only to pyrethroid-PBO ITNs could averted up to twice as many cases, although the additional benefit is highly variable and depends on the setting conditions. We project that annual delivery of long-lasting, non-pyrethroid IRS would prevent substantially more cases over 3-years, while pyrethroid-PBO ITNs tend to be the most cost-effective intervention per case averted. The model was able to predict prevalence and efficacy against prevalence in both RCTs for the intervention types tested. MINT is applicable to regions of sub-Saharan Africa with endemic malaria and provides users with a method of designing intervention packages given their setting and budget. Interpretation The most cost-effective vector control package will vary locally. Models able to recreate results of RCTs can be used to extrapolate outcomes elsewhere to support evidence-based decision making for investment in vector control

    A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study.

    Get PDF
    BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide

    Clinical Characteristics and Predictors of Outcomes of Hospitalized Patients With Coronavirus Disease 2019 in a Multiethnic London National Health Service Trust: A Retrospective Cohort Study.

    Get PDF
    BACKGROUND: Emerging evidence suggests ethnic minorities are disproportionately affected by coronavirus disease 2019 (COVID-19). Detailed clinical analyses of multicultural hospitalized patient cohorts remain largely undescribed. METHODS: We performed regression, survival, and cumulative competing risk analyses to evaluate factors associated with mortality in patients admitted for COVID-19 in 3 large London hospitals between 25 February and 5 April, censored as of 1 May 2020. RESULTS: Of 614 patients (median age, 69 [interquartile range, 25] years) and 62% male), 381 (62%) were discharged alive, 178 (29%) died, and 55 (9%) remained hospitalized at censoring. Severe hypoxemia (adjusted odds ratio [aOR], 4.25 [95% confidence interval {CI}, 2.36-7.64]), leukocytosis (aOR, 2.35 [95% CI, 1.35-4.11]), thrombocytopenia (aOR [1.01, 95% CI, 1.00-1.01], increase per 109 decrease), severe renal impairment (aOR, 5.14 [95% CI, 2.65-9.97]), and low albumin (aOR, 1.06 [95% CI, 1.02-1.09], increase per gram decrease) were associated with death. Forty percent (n = 244) were from black, Asian, and other minority ethnic (BAME) groups, 38% (n = 235) were white, and ethnicity was unknown for 22% (n = 135). BAME patients were younger and had fewer comorbidities. Although the unadjusted odds of death did not differ by ethnicity, when adjusting for age, sex, and comorbidities, black patients were at higher odds of death compared to whites (aOR, 1.69 [95% CI, 1.00-2.86]). This association was stronger when further adjusting for admission severity (aOR, 1.85 [95% CI, 1.06-3.24]). CONCLUSIONS: BAME patients were overrepresented in our cohort; when accounting for demographic and clinical profile of admission, black patients were at increased odds of death. Further research is needed into biologic drivers of differences in COVID-19 outcomes by ethnicity

    Characterising the intensity of insecticide resistance: A novel framework for analysis of intensity bioassay data

    No full text
    Insecticide resistance is a growing problem that risks harming the progress made by vector control tools in reducing the malaria burden globally. New methods for quantifying the extent of resistance in wild populations are urgently needed to guide deployment of interventions to improve disease control. Intensity bioassays measure mosquito mortality at a range of insecticide doses and characterise phenotypic resistance in regions where resistance is already detected. These data are increasingly being collected but tend to exhibit high measurement error and there is a lack of formal guidelines on how they should be analysed or compared. This paper introduces a novel Bayesian framework for analysing intensity bioassay data, which uses a flexible statistical model able to capture a wide variety of relationships between mortality and insecticide dose. By accounting for background mortality of mosquitoes, our approach minimises the impact of this source of measurement noise resulting in more precise quantification of resistance. It outputs a range of metrics for describing the intensity and variability in resistance within the sample and quantifies the level of measurement error in the assay. The functionality is illustrated with data from laboratory-reared mosquitoes to show how the lethal dose varies within and between different strains. The framework can also be used to formally test hypotheses by explicitly considering the high heterogeneity seen in these types of data in field samples. Here we show that the intensity of resistance (as measured by the median lethal dose (LC50) of insecticide) increases over 7 years in mosquitoes from one village in Burkina Faso but remains constant in another. This work showcases the benefits of statistically rigorous analysis of insecticide bioassay data and highlights the additional information available from this and other dose-response data

    The impact of the COVID-19 pandemic on patterns of attendance at emergency departments in two large London hospitals: an observational study

    Get PDF
    Abstract Background Hospitals in England have undergone considerable change to address the surge in demand imposed by the COVID-19 pandemic. The impact of this on emergency department (ED) attendances is unknown, especially for non-COVID-19 related emergencies. Methods This analysis is an observational study of ED attendances at the Imperial College Healthcare NHS Trust (ICHNT). We calibrated auto-regressive integrated moving average time-series models of ED attendances using historic (2015–2019) data. Forecasted trends were compared to present year ICHNT data for the period between March 12, 2020 (when England implemented the first COVID-19 public health measure) and May 31, 2020. We compared ICHTN trends with publicly available regional and national data. Lastly, we compared hospital admissions made via the ED and in-hospital mortality at ICHNT during the present year to the historic 5-year average. Results ED attendances at ICHNT decreased by 35% during the period after the first lockdown was imposed on March 12, 2020 and before May 31, 2020, reflecting broader trends seen for ED attendances across all England regions, which fell by approximately 50% for the same time frame. For ICHNT, the decrease in attendances was mainly amongst those aged < 65 years and those arriving by their own means (e.g. personal or public transport) and not correlated with any of the spatial dependencies analysed such as increasing distance from postcode of residence to the hospital. Emergency admissions of patients without COVID-19 after March 12, 2020 fell by 48%; we did not observe a significant change to the crude mortality risk in patients without COVID-19 (RR 1.13, 95%CI 0.94–1.37, p = 0.19). Conclusions Our study findings reflect broader trends seen across England and give an indication how emergency healthcare seeking has drastically changed. At ICHNT, we find that a larger proportion arrived by ambulance and that hospitalisation outcomes of patients without COVID-19 did not differ from previous years. The extent to which these findings relate to ED avoidance behaviours compared to having sought alternative emergency health services outside of hospital remains unknown. National analyses and strategies to streamline emergency services in England going forward are urgently needed

    A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study

    Get PDF
    Abstract Background The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. Methods A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration–response curves for each insecticide–species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. Results Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species–insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. Conclusion Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide. Graphical abstrac
    corecore