8,271 research outputs found

    Circular-Polarization-Dependent Study of Microwave-Induced Conductivity Oscillations in a Two-Dimensional Electron Gas on Liquid Helium

    Get PDF
    The polarization dependence of photoconductivity response at cyclotron-resonance harmonics in a nondegenerate two-dimensional (2D) electron system formed on the surface of liquid helium is studied using a setup in which a circular polarization of opposite directions can be produced. Contrary to the results of similar investigations reported for semiconductor 2D electron systems, for electrons on liquid helium, a strong dependence of the amplitude of magnetoconductivity oscillations on the direction of circular polarization is observed. This observation is in accordance with theoretical models based on photon-assisted scattering and, therefore, it solves a critical issue in the dispute over the origin of microwave-induced conductivity oscillations.Comment: 5 pages, 4 figure

    An Overview of a Grid Architecture for Scientific Computing

    Full text link
    This document gives an overview of a Grid testbed architecture proposal for the NorduGrid project. The aim of the project is to establish an inter-Nordic testbed facility for implementation of wide area computing and data handling. The architecture is supposed to define a Grid system suitable for solving data intensive problems at the Large Hadron Collider at CERN. We present the various architecture components needed for such a system. After that we go on to give a description of the dynamics by showing the task flow

    Isochoric thermal conductivity of solid nitrogen

    Get PDF
    The isochoric thermal conductivity of solid nitrogen has been investigated on four samples of different densities in the temperature interval from 20 K to the onset of melting. In alfa-N2 the isochoric thermal conductivity exhibits a dependence weaker than 1/T; in beta-N2 it increases slightly with temperature. The experimental results are discussed within a model in which the heat is transported by low-frequency phonons or by "diffusive" modes above the mobility boundary. The growth of the thermal conductivity in beta-N2 is attributed to the decreasing "rotational" component of the total thermal resistance, which occurs as the rotational correlations between the neighboring molecules become weaker.Comment: Postscript 12 pages, 3 figures, 1 table. To be published in 200

    Sliding of Electron Crystal of Finite Size on the Surface of Superfluid He-4 Confined in a Microchannel

    Get PDF
    We present a new study of the nonlinear transport of a two-dimensional electron crystal on the surface of liquid helium confined in a 10 micrometer-wide channel in which the effective length of the crystal can be varied from 10 to 215 micrometers. At low driving voltages, the moving electron crystal is strongly coupled to deformation of the liquid surface arising from resonant excitation of surface capillary waves, ripplons, while at higher driving voltages the crystal decouples from the deformation. We find strong dependence of the decoupling threshold of the driving electric field acting on the electrons, on the size of the crystal. In particular, the threshold electric field significantly decreases when the length of the crystal becomes shorter than 25 micrometers. We explain this effect as arising from weakening of surface deformations due to radiative loss of resonantly-excited ripplons from an electron crystal of finite size, and we account for the observed effect using an instructive analytical model.Comment: 5 figure

    Coupling between Rydberg states and Landau levels of electrons trapped on liquid helium

    Get PDF
    We investigate the coupling between Rydberg states of electrons trapped on a liquid Helium surface and Landau levels induced by a perpendicular magnetic field. We show that this realises a prototype quantum system equivalent to an atom in a cavity, where their coupling strength can be tuned by a parallel magnetic field. We determine experimentally the renormalisation of the atomic transition energies induced by the coupling to the cavity, which can be seen as an analogue of the Lamb shift. When the coupling is sufficiently strong the transition between the ground and first excited Rydberg states splits into two resonances corresponding to dressed states with vacuum and one photon in the cavity. Our results are in quantitative agreement with the energy shifts predicted by the effective atom in a cavity model where all parameters are known with high accuracy
    corecore