30 research outputs found

    Ανάπτυξη Αλγορίθμου Αυτόματης Αρμονικής Ανάλυσης για Jazz Standards

    No full text
    Σ' αυτή την εργασία περιγράφεται αναλυτικά η λειτουργία ενός αλγόριθμου για την αυτόματη αρμονική ανάλυση τονικών κομματιών του standard ρεπερτορίου της jazz με εκπαιδευτική χρησιμότητα. Ο πρωτότυπος χαρακτήρας της λειτουργίας του αλγορίθμου έγκειται στην αμεσότητα της χρήσης του ακόμα και μη-υπολογιστικά και στο γεγονός ότι βασίζεται αποκλειστικά στον αναλυτικό τρόπο σκέψης ενός μουσικού. Οι αναλύσεις των κομματιών που παρουσιάζονται, αποδεικνύουν την αποτελεσματικότητα του αλγορίθμου σε ένα πολύ μεγάλο μέρος του standard ρεπερτορίου και ανοίγουν προοπτικές για την τελειοποίησή του και τη μελλοντική επέκτασή του για την κάλυψη περαιτέρω εκπαιδευτικών αναγκών.This paper describes in detail the operation of an algorithm for the automatic harmonic analysis of tonal pieces of the jazz standard repertoire with educational usefulness. The original character of this academic work lies in the immediacy of the algorithm's functionality, even non-computationally, and in the fact that it is based solely on the analytical way of thinking of a musician. The analyzes of the presented pieces prove the effectiveness of the algorithm in a very large part of the jazz standard repertoire and open perspectives for its perfection and its future expansion to meet further educational needs

    Design and Development of Games and Interactive Installations for Environmental Awareness

    No full text
    Digital games and playful interactive installations are considered a promising means to raising awareness about the environment and persuading people to adopt an environmental friendly behavior. However, the selection and use of appropriate methods and paradigms for designing and evaluating such systems and successfully blending the ‘fun’ element with the messages to be communicated is still an active research issue. The aim of this paper is to investigate the benefits and drawbacks of using games and playful interactive technologies for changing people’s attitude towards the environment through a series of projects developed and publicly presented during a campaign for reducing the use of plastic bags. The development included the identification of the projects’ goals, an analysis of people, activities, target behavior and context of use, and finally the design and prototyping of the interactive installations. In total, eight projects have been developed, six interactive installations and two digital games that have been publicly presented, used and evaluated during the campaign. An additional user evaluation of the two games has been performed in the laboratory, to gain more insight on their usability and impact. The paper presents an overview of the design process and methodology, the main design elements of each project, and a number of observations and preliminary evaluation results

    CoFly: An automated, AI-based open-source platform for UAV precision agriculture applications

    No full text
    This paper presents a modular and holistic Precision Agriculture platform, named CoFly, incorporating custom-developed AI and ICT technologies with pioneering functionalities in a UAV-agnostic system. Cognitional operations of micro Flying vehicles are utilized for data acquisition incorporating advanced coverage path planning and obstacle avoidance functionalities. Photogrammetric outcomes are extracted by processing UAV data into 2D fields and crop health maps, enabling the extraction of high-level semantic information about seed yields and quality. Based on vegetation health, CoFly incorporates a pixel-wise processing pipeline to detect and classify crop health deterioration sources. On top of that, a novel UAV mission planning scheme is employed to enable site-specific treatment by providing an automated solution for a targeted, on-the-spot, inspection. Upon the acquired inspection footage, a weed detection module is deployed, utilizing deep-learning methods, enabling weed classification. All of these capabilities are integrated inside a cost-effective and user-friendly end-to-end platform functioning on mobile devices. CoFly was tested and validated with extensive experimentation in agricultural fields with lucerne and wheat crops in Chalkidiki, Greece showcasing its performance

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    No full text
    International audienceLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    No full text
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 ×\times  6 ×\times  6 m3^3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
    corecore