38 research outputs found

    Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2−/− mice

    Get PDF
    Introduction Primary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. Methods FVB/NJ and Mdr2−/− mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. Results Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2−/− mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2−/− mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. Conclusion Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression

    Mast cells selectively target large cholangiocytes during biliary injury via H2HR-mediated cAMP/pERK1/2 signaling

    Get PDF
    Bile ducts are heterogenous in structure and function, and primary sclerosing cholangitis (PSC) damages specific bile ducts leading to ductular reaction (DR), mast cell (MC) infiltration, increased histamine release, inflammation, and fibrosis. Bile duct ligation (BDL) induces large duct damage via cyclic adenosine monophosphate (cAMP)/extracellular signal-related protein kinase (ERK) signaling, and large cholangiocytes express H2 histamine receptor (H2HR). We evaluated how MCs interact with large cholangiocytes during cholestasis. Male wild-type (WT) and MC-deficient (Kit(W-sh)) mice 10-12 weeks of age were subjected to BDL for 7 days. Select Kit(W-sh) mice were injected with MCs pretreated with control or H2HR antagonist (ranitidine, 25 mu m, 48 h) via tail vein injection. In vitro, MC migration toward small mouse cholangiocytes (SMCCs) and large mouse cholangiocytes (LMCCs) treated with lipopolysaccharide or histamine (+/- ranitidine) was measured. LMCCs were stimulated with MC supernatants pretreated with control, alpha-methyl-dl-histidine (to block histamine release), or ranitidine. Liver damage, large duct DR/senescence, inflammation, fibrosis, and cAMP/ERK immunoreactivity increased in BDL WT and Kit(W-sh)+MC mice but decreased in BDL Kit(W-sh) and Kit(W-sh)+MC-H2HR mice. In vitro, MCs migrate toward damaged LMCCs (but not SMCCs) blocked by inhibition of H2HR. Loss of MC histamine or MC-H2HR decreases LMCC proliferation, senescence, H2HR, and cAMP/ERK levels. Human PSC livers have increased MC number found near DR, senescent ducts, and H2HR-positive ducts. Conclusion: Infiltrating MCs preferentially interact with large ducts via H2HR signaling promoting biliary and liver damage. Mediation of MCs may be a therapeutic strategy for PSC

    Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling

    Get PDF
    Primary sclerosing cholangitis (PSC) is characterized by biliary damage and fibrosis. Multidrug resistance-2 gene knockout (Mdr2−/−) mice and PSC patients have increased histamine (HA) levels (synthesized by l-histidine decarboxylase, HDC) and HA receptor (HR) expression. Cholestatic HDC−/− mice display ameliorated biliary damage and hepatic fibrosis. The current study evaluated the effects of knockout of HDC−/− in Mdr2−/− mice (DKO) on biliary damage and hepatic fibrosis. WT, Mdr2−/− mice and homozygous DKO mice were used. Selected DKO mice were treated with HA. We evaluated liver damage along with HDC expression and HA serum levels. Changes in ductular reaction were evaluated along with liver fibrosis, inflammation and bile acid signaling pathways. The expression of H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C was determined. In vitro, cholangiocyte lines were treated with HA with/without H1/H2 inhibitors before measuring: H1/H2HR, TGF-β1 and VEGF-C expression. Knockout of HDC ameliorates hepatic damage, ductular reaction, fibrosis, inflammation, bile acid signaling and H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C signaling. Reactivation of the HDC/HA axis increased these parameters. In vitro, stimulation with HA increased HR expression and PKC-α, TGF-β1 and VEGF-C expression, which was reduced with HR inhibitors. Our data demonstrate the key role for the HDC/HA axis in the management of PSC progression

    Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis

    Get PDF
    Biliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes

    Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury

    Get PDF
    Liver diseases are a major health concern and affect a large proportion of people worldwide. There are over 100 types of liver disorders, including cirrhosis, cholangiocarcinoma (CCA), hepatocellular carcinoma, and hepatitis. Despite the relevant number of people who are affected by liver diseases, and the increased awareness with regard to these disorders, the number of deaths corresponding to liver injury is expected to increase in the foreseeable future. One of the possible reasons for this is that a complete comprehension of the mechanisms of hepatic damage involving specific liver anatomical districts is lacking, and, as a consequence, current treatments available are suboptimal. A major burden in the clinical setting are chronic cholestatic liver diseases (e.g., primary biliary cholangitis [PBC], primary sclerosing cholangitis [PSC], biliary atresia), which target the biliary epithelium and are characterized by cholestasis.(1, 2) Because the secretin (Sct)/secretin receptor (SR) axis (expressed only by cholangiocytes in the liver)(3, 4) is the major regulator of ductal bile secretion,(5, 6) it is intuitive that this axis plays a key role in the maintenance of biliary homeostasis during the progression of cholangiopathies. For instance, PBC is characterized by reduced bicarbonate secretion, a phenomenon possibly impeding the formation of an HCO3 canalicular film (“bicarbonate umbrella”) on bile ducts, which has protective properties against highly concentrated bile acids (BAs).(1, 7, 8) In this review, we examined the molecular mechanisms by which the Sct/SR axis regulates biliary function and the homeostasis of the biliary epithelium in normal and pathophysiological conditions

    The functional roles of immune cells in primary liver cancer

    No full text
    : Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Incidence of liver cancer has been increasing in recent years, and the 5-year survival is still under 20%. HCC and CCA are often accompanied with a dense stroma coupled with infiltrated immune cells, which is referred to as the tumor microenvironment. Populations of specific immune cells, such as high density of CD163+ macrophages and low density of CD8+ T cells, is associated with prognosis and survival rates in both HCC and CCA. Immune cells in the tumor microenvironment can be a therapeutic target for liver cancer treatments. Previous studies have introduced immunotherapy using immune checkpoint inhibitors, pulsed dendritic cells, or transduced T cells, to enhance cytotoxicity of immune cells and inhibit tumor growth. This review summarizes current understandings of the roles of immune cells in primary liver cancer covering HCC and CCA

    Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies

    No full text
    Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intra-hepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background informa-tion of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. & COPY; 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023

    Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment

    No full text
    Histamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated β-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-β1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-β1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC

    Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling

    No full text
    Background & Aim Cholestasis is characterized by increased total bile acid (TBA) levels, which are regulated by farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15). Primary sclerosing cholangitis (PSC) patients typically present with inflammatory bowel disease (IBD). Mast cells (MCs) (i) express FXR and (ii) infiltrate the liver during cholestasis promoting liver fibrosis. In bile duct ligated (BDL) MC-deficient mice (KitW-sh), ductular reaction (DR) and liver fibrosis decrease compared to BDL WT; and MC injection exacerbates liver damage in normal mice. Approach & Results In this study, we demonstrated that MC-FXR regulates biliary FXR/FGF15, DR, hepatic fibrosis and alters intestinal FXR/FGF15. We found increased MC number and biliary FXR expression in patients with liver injury compared to control. Histamine and FGF19 serum levels and small heterodimer partner expression increase in PSC and PSC-IBD patients compared to healthy controls. MC injection increased liver damage, DR, inflammation, biliary senescence/senescence associated secretory phenotype (SASP), fibrosis and histamine in KitW-sh mice. Inhibition of MC-FXR prior to injection reduced these parameters. BDL and KitW-sh mice injected with MCs displayed increased TBA content, biliary FXR/FGF15 and intestinal inflammation, which decreased in BDL KitW-sh and KitW-sh mice injected with MC-FXR. MCs increased ileal FXR/FGF15 expression in KitW-sh mice that was reduced following FXR inhibition. BDL and Mdr2-/- mice, models of PSC, displayed increased intestinal MC infiltration and FXR/FGF15 expression. These were reduced following MC stabilization with cromolyn sodium in Mdr2-/- mice. In vitro, MC-FXR inhibition decreased biliary proliferation/SASP/FGF and hepatic stellate cell activation. Conclusion Our studies demonstrate the novel findings that MC-FXR plays a key role in liver damage and DR, including TBA regulation through alteration of intestinal and biliary FXR/FGF15 signaling
    corecore