5,575 research outputs found

    Focus Point Supersymmetry: Proton Decay, Flavor and CP Violation, and the Higgs Boson Mass

    Get PDF
    In focus point supersymmetry, all squarks and sleptons, including those of the third generation, have multi-TeV masses without sacrificing naturalness. We examine the implications of this framework for low energy constraints and the light Higgs boson mass. Undesirable contributions to proton decay and electric dipole moments, generic in many supersymmetric models, are strongly suppressed. As a result, the prediction for alpha_s in simple grand unified theories is 3 to 5 standard deviations closer to the experimental value, and the allowed CP-violating phases are larger by one to two orders of magnitude. In addition, the very heavy top and bottom squarks of focus point supersymmetry naturally produce a Higgs boson mass at or above 115 GeV without requiring heavy gauginos. We conclude with an extended discussion of issues related to the definition of naturalness and comment on several other prescriptions given in the literature.Comment: 31 pages, 10 figures, references added, version to appear in Phys. Rev.
    corecore