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Abstract

In focus point supersymmetry, all squarks and sleptons, including those of
the third generation, have multi-TeV masses without sacrificing naturalness.
We examine the implications of this framework for low energy constraints and
the light Higgs boson mass. Undesirable contributions to proton decay and
electric dipole moments, generic in many supersymmetric models, are strongly
suppressed. As a result, the prediction for αs in simple grand unified theories
is 3σ–5σ closer to the experimental value, and the allowed CP-violating phases
are larger by one to two orders of magnitude. In addition, the very heavy
top and bottom squarks of focus point supersymmetry naturally produce a
Higgs boson mass at or above 115 GeV without requiring heavy gauginos.
We conclude with an extended discussion of issues related to the definition of
naturalness and comment on several other prescriptions given in the literature.
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I. INTRODUCTION

Among the motivations for supersymmetric extensions of the standard model are three
important virtues: they provide a natural solution to the gauge hierarchy problem [1–4];
they predict a suitable particle candidate for cold dark matter [5,6]; and they incorporate
the unification of coupling constants [7]. All three of these virtues are realized in a straight-
forward way if superpartners masses are of order the weak scale. At present, however, no
superpartners have been discovered at colliders. Even more problematic, their virtual effects
on low energy observables have also not been seen. The incompatibility of generic supersym-
metric models with low energy constraints encompasses a diverse set of difficulties, which
together are known as the supersymmetric flavor and CP problems.

Much of supersymmetric model building is motivated by the desire to solve these prob-
lems without sacrificing some or all of the virtues mentioned above. There are many ap-
proaches to this puzzle. Typically, the preservation of naturalness is assumed to require
superpartner masses below 1 TeV. The supersymmetric flavor problems are then solved, for
example, by scalar degeneracy. Dynamical mechanisms guaranteeing scalar degeneracy have
been found. The virtues of these mechanisms are many, but there are also typically a num-
ber of attendant difficulties, such as the µ problem in gauge-mediated models [8] and the
problem of tachyonic sleptons in anomaly-mediated models [9]. In addition, the suppression
of CP violation usually requires additional structure (see, for example, Refs. [9–13]), and
the most natural dark matter particle, a neutralino with the desired thermal relic density,
is almost always eliminated (although new dark matter candidates may emerge [14–16]).

Focus point supersymmetry [17–19,13,20] has been proposed as an alternative to these
approaches. In focus point supersymmetry, all squarks and sleptons, including those of the
third generation, naturally have masses well above 1 TeV. All supersymmetric flavor and
CP problems are then ameliorated by decoupling, while preserving all of the virtues listed
above. The naturalness of super-TeV scalars arises from correlations among supersymme-
try parameters. More specifically, the weak scale value of the parameter m2

Hu
, and with

it, the scale of electroweak symmetry breaking, is highly insensitive to the values of the
scalar masses mi, and is determined primarily by gaugino masses Mi and trilinear scalar
couplings Ai. Assuming a hierarchy mi � Mi, Ai, as follows naturally from, for example, an
approximate R-symmetry [21], the observed weak scale may then be obtained without large
fine-tuning, even in the presence of very large scalar masses.

The conditions for the realization of focus point supersymmetry imply testable corre-
lations in the superpartner mass spectrum. Sufficient conditions have been presented in
Ref. [17]. For example, for any value of tan β >∼ 5 and mt ≈ 174 GeV, a universal scalar
mass guarantees focus point supersymmetry.1 The simplicity of the required scalar mass

1In fact, focus point supersymmetry relies on only a small subset of the universality assumption,
being independent of all scalar masses with small Yukawa couplings [17,18]. In addition, no relations
are required among the gaugino masses and A parameters, and supersymmetry breaking need
not be gravity-mediated. For these reasons, focus point supersymmetry encompasses a broad
class of models, and may be found in models with gauge- and anomaly-mediated supersymmetry
breaking [13,20].
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boundary condition, and the strong dependence of this simplicity on concrete experimen-
tal facts, in particular, the measured top quark mass, provide two of the more striking
motivations for the framework.

In this respect, the motivation for focus point supersymmetry shares many features with
a well-known precedent — the argument for supersymmetric grand unified theories (GUTs).
Recall that, assuming minimal supersymmetric field content, the renormalization group
(RG) trajectories [22] of the three standard model gauge couplings focus to a point at the
scale MGUT ' 2 × 1016 GeV [23]. This intersection is highly non-trivial. Assuming super-
symmetric thresholds around the TeV scale, there are no free parameters, and the meeting
requires the standard model gauge couplings to be within a few percent of their precisely
measured values. This may be regarded as a coincidence. However, it may also be taken as
evidence for supersymmetry with grand unification, especially as grand unification provides
a simple and elegant explanation of the standard model gauge structure and representation
content [24]. Indeed, this precise quantitative success has been taken by some as an impor-
tant advantage of supersymmetry over all other attempts to address the gauge hierarchy
problem.

Focus point supersymmetry is motivated by a similar argument. Assuming a universal
GUT scale scalar mass, the family of m2

Hu
RG trajectories for different values of this universal

mass meet at a point, the weak scale. This meeting is also highly non-trivial. Assuming
unification at the GUT scale, there are no free parameters, and the meeting requires the
precisely measured top quark mass to be within ∼ 2% (∼ 1σ) of its measured value [18].
This may be regarded as a coincidence. However, it may also be taken as evidence for
supersymmetry with a large universal scalar mass, especially if it provides a simple solution
to the longstanding supersymmetric flavor and CP problems.2

In two studies with Wilczek [25,26], we explored the cosmological and astrophysical
implications of focus point supersymmetry. In particular, we found that the focus point
framework preserves the most natural supersymmetric dark matter candidate, the stable
neutralino with the desired thermal relic density. However, unlike traditional scenarios in
which this neutralino is Bino-like, in focus point models it is a gaugino-Higgsino mixture.
The Higgsino component has important implications for dark matter searches. For example,
many indirect detection signal rates are enhanced by several orders of magnitude. The focus
point scenario therefore predicts observable signals in diverse experiments, ranging from
neutrino and gamma-ray telescopes to space-based searches for anti-particles in cosmic rays.

In this study, we address the following question: to what extent can all of the supersym-
metric flavor and CP problems be solved in focus point supersymmetry by heavy scalars?
We consider the example of a universal scalar mass in minimal supergravity. In this simple
realization of focus point supersymmetry, many supersymmetric flavor problems are solved
by assumption. However, even theories with universal scalar masses generically violate cur-
rent bounds on proton decay and electric dipole moments, and they may also be significantly

2This analogy highlights the similarity of focus point supersymmetry and gauge coupling unifica-
tion in their strong dependence on precisely measured experimental data. Note, however, that in
the case of focus point supersymmetry, the meeting is of a family of RG trajectories, of which only
one can be realized in Nature.
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constrained by measurements of the muon’s magnetic dipole moment and B → Xsγ. We will
evaluate the status of focus point supersymmetry with respect to each of these constraints
in Secs. II–V.

Of course, focus point supersymmetry also has important implications for high energy
colliders. The prospects for discovering multi-TeV squarks at the LHC have been considered
in Refs. [27,28]. In Sec. VI we consider the implications of focus point supersymmetry
for discovery of the light Higgs boson. Of all of the as-yet-undiscovered particles of the
minimal supersymmetric model, the Higgs boson is of special interest, given current stringent
constraints on its mass, the recently reported evidence for its observation at LEP, and the
prospect for discovery at Tevatron Run II. Focus point supersymmetry differs from all other
proposed supersymmetric models in that all squarks and sleptons, including the top and
bottom squarks, may be naturally heavy. For this reason, focus point supersymmetry has
novel implications for the Higgs boson mass. We will show that large radiative corrections
from super-TeV squarks naturally lead to Higgs masses in the experimentally preferred
range.

Finally, we close with an extended discussion of naturalness in Sec. VII. While no
discussion of naturalness and fine-tuning can claim quantitative rigor, the possibility of focus
point supersymmetry raises a number of qualitatively novel issues. When confronted with
these issues, various naturalness prescriptions in the literature yield qualitatively different
results that should not be dismissed as merely subjective ambiguities. In this section, we
compare our approach with others currently in the literature to clarify and highlight the
essential differences. We also reiterate that the focus point is valid for all values of tan β >∼ 5.
In Ref. [18], we demonstrated this analytically for moderate tanβ and tanβ ≈ mt/mb and
numerically for all tan β. In the Appendix we supply the analytical proof for all tan β >∼ 5.

II. PROTON DECAY AND GAUGE COUPLING UNIFICATION

Constraints from proton decay and the status of gauge coupling unification are intimately
connected. As reviewed above, the apparent unification of gauge couplings in supersymmetry
has long been considered an important virtue. The advantage of the minimal supersymmet-
ric standard model over the standard model with respect to gauge coupling unification is
twofold. First, the gauge couplings unify more accurately. This simplifies attempts to build
GUT models, since abnormally large threshold corrections are not required. Second, the uni-
fication scale MGUT is high enough that proton decay, mediated by GUT scale particles [29],
is sufficiently suppressed to evade experimental bounds.

The current status of supersymmetric unification is, however, significantly more compli-
cated. Analyses of gauge coupling unification now include two-loop RG equations [30] and
leading-log [31] and finite [32,33] weak scale threshold corrections. In addition, the mea-
surement of sin2 θW has improved. With these refinements, the gauge couplings are found
to miss each other with a significant discrepancy. Defining, as usual, the GUT scale through
the relation g1(MGUT) ≡ g2(MGUT), a quantitative measure of the mismatch is

ε ≡ g3(MGUT)− g1(MGUT)

g1(MGUT)
. (1)
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FIG. 1. Contours of ε, the GUT scale mismatch in gauge coupling unification. The shaded re-
gions are excluded by the requirements of a neutral LSP (left) and the 103 GeV chargino mass bound
(right and bottom). In this and all following plots unless otherwise noted, we fix mt = 174 GeV,
A0 = 0 and µ > 0, and choose representative values of tan β as indicated.

The parameter ε depends only on measured standard model quantities and the weak scale
supersymmetric particle spectrum.

In minimal supergravity, the weak scale spectrum is fixed by 4+1 parameters: m0, M1/2,
A0, tanβ, and sign(µ). We determine the weak scale theory by two-loop RG evolution
with full 1-loop threshold corrections. The magnitude of µ is determined by (full one-
loop) radiative electroweak symmetry breaking. Values of ε in this framework are presented
in Fig. 1. Heavy superpartners reduce |ε| [31–33]. One might therefore naively expect
|ε| to be minimized in the focus point region with large m0. For fixed M1/2, |ε| indeed
decreases as m0 increases up to about 1 TeV. Above 1 TeV, however, |µ| eventually drops,
and threshold corrections from light Higgsinos cause |ε| to increase again. As a result,
throughout parameter space, −2% < ε < −1% [32–34]. This GUT scale discrepancy is
related to αs(MZ) by the approximate relation

δαs ≈ 2
α2

s

αG
ε ≈ 0.7 ε . (2)

The current value of the strong coupling constant is αs(MZ) = 0.119± 0.002 [35]. In terms
of the experimental uncertainty, then, the mismatch is a 3.5σ to 7σ effect.

Of course, one might hope that the mismatch in couplings is a reflection of GUT scale
threshold corrections. In the simple case of minimal SU(5) [36], for example, the combined
threshold correction due to the colored Higgs bosons H3, GUT scale gauge bosons, and the
Higgs bosons in the 24 representation is [37–39]

εH3 = 0.3
αG

π
ln

(
MH3

MGUT

)
. (3)

We see that light colored Higgs bosons may explain the mismatch. However, recent progress
in proton decay, both experimental and theoretical, places stringent lower limits on GUT
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scale particle masses. Recent results from Superkamiokande significantly strengthen limits
on the proton lifetime. In the p → K+ν̄ channel, for example, the current limit is τ(p →
K+ν̄) > 1.9×1033 yr [40]. On the theoretical side, it is now known that there are dimension
5 supersymmetric contributions to proton decay involving right-handed scalars (the so-called
RRRR operators) with amplitudes that scale as tan2 β [41–44]. The combined effect of these
developments is that the colored Higgs mass MH3 is typically required to be far above MGUT,
especially for large tan β, and the mismatch in gauge couplings is, in fact, exacerbated by
such GUT scale threshold corrections.

In non-minimal models there will be additional GUT threshold corrections. These cor-
rections may improve the unification of couplings [45–47], make it even more problem-
atic [48,49], or be sufficiently complicated that no definite statement can be made [50]. In
general, we may write the total GUT threshold correction as [46,47]

εHeff
+ ∆ε ≡ 0.3

αG

π
ln

(
MHeff

MGUT

)
+ ∆ε , (4)

where MHeff
is the effective color triplet Higgs mass entering the proton decay amplitude, and

∆ε is the threshold correction from sectors of the theory that have no impact on proton decay.
∆ε is generically a model-dependent holomorphic function of ratios of GUT scale masses
and vacuum expectation values. For some models, however, ∆ε simplifies tremendously.
For example, in missing partner SU(5) models [45], ∆ε = 0.3[αG/π][15 ln 2− (25/2) ln 5] ∼
−3.9% [38,39], and in the complete SO(10) model of Ref. [48], ∆ε = 0.3[αG/π] 21 ln 2 ∼
+5.8% [46]. In both cases, there are no remaining free parameters.

These examples illustrate that the severity of the proton decay problem is model depen-
dent; some specific models may even be consistent with current constraints. However, it is
clear, as has recently been emphasized in Ref. [51], that generally speaking, current proton
decay bounds place a significant strain on many well-motivated models, as they exclude the
large threshold corrections necessary for gauge coupling unification. General mechanisms
for suppressing proton decay are therefore welcome, in that they allow greater freedom in
GUT model building.

In this spirit, we now investigate the implications of focus point supersymmetry. In
Fig. 2, we plot

∆ε ≡ ε− εHeff
, (5)

where ε is defined in Eq. (1), using weak scale experimental inputs and sparticle spectra,
and MHeff

is taken to be as low as possible consistent with current proton lifetime bounds.3

In other words, Fig. 2 shows the minimal (in absolute value) threshold correction from non-
minimal GUT particle sectors allowed by coupling constant unification and current proton
decay constraints.

We see that in the focus point region with large m0, coupling constant unification may
be achieved with smaller non-minimal threshold corrections. In this region, proton decay is

3In evaluating the proton lifetime bound, we use the fits of Ref. [44], which include the RRRR
contributions.
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FIG. 2. Contours of the minimal (in absolute value) threshold correction ∆ε from non-minimal
GUT particle content allowed by coupling constant unification and current proton decay limits.

highly suppressed by heavy squarks and sleptons. The allowed value of MHeff
is therefore

lower than in conventional models, and the required additional GUT threshold correction
from non-minimal GUT sectors is reduced. More quantitatively, for a fixed M1/2, the re-
quired threshold corrections are decreased by 1% to 1.5% for focus point scenarios with
multi-TeV scalars relative to conventional scenarios with m0 ∼ O(100 GeV). Thus in many
GUTs, the prediction for αs(MZ) is closer to the experimental value by 3σ to 5σ in focus
point models relative to conventional scenarios. As a result, in focus point scenarios, large
threshold corrections from baroque non-minimal sectors are not required, increasing the
viability of simpler and, presumably, more credible models.

III. ELECTRIC DIPOLE MOMENTS

Constraints on CP violation can be flavor-violating, as in the case of εK , or flavor-
conserving, as in the case of electric dipole moments (EDMs). For generic theories, the
bound from εK is the most stringent of all flavor- and CP-violating constraints. However,
the εK constraint is satisfied in many theories with natural flavor violation suppression. In
contrast, the EDM constraints are more robust, in the sense that they cannot be avoided
simply by scalar degeneracy or alignment. For this reason, EDMs pose a serious problem
even in models with a universal scalar mass, as well as in gauge- and anomaly-mediated
theories. EDMs have been studied in many supersymmetric models. (See, for example,
Ref. [12] and references therein.) Here we evaluate the predictions for EDMs in focus point
supersymmetry.

In minimal supergravity, the parameters M1/2, A0, µ, and B may all be complex. The
first two are input parameters of the framework. The µ and B parameters are constrained
by electroweak symmetry breaking, but this restricts only their magnitudes. In principle,
it is possible that the phases of these four parameters are related, but lacking any specific
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mechanism for their generation, we treat them as independent. The freedom of U(1)R and
U(1)PQ rotations imply that only two phases are physical. One of these is

θCP ≡ Arg(µB∗M1/2) , (6)

which generates EDMs. The EDM df of fermion f is the coefficient of the electric dipole
term

LEDM = − i

2
df f̄σαβγ5f Fαβ , (7)

where F is the electromagnetic field strength. Supersymmetric contributions to EDMs arise
from sfermion-gaugino loops. As is clear from the structure of the operator in Eq. (7),
these contributions require a chirality flip along the fermion-sfermion line. For down-type
fermions, these contributions are therefore enhanced for large tan β.

We will consider the stringent constraints from the EDMs of the electron and neutron.
(The EDM of the mercury atom is also competitive in some regions of parameter space [52].)
For the electron, there is a direct tanβ enhancement. This is most easily seen in the mass
insertion approximation, where, for large tanβ, the supersymmetric contributions take the
form

dSUSY
e ≈ sin θCP

me

2
µ tanβ

[
g2
1M1F1(M

2
1 , µ2, m2

ẽL
, m2

ẽR
) + g2

2M2F2(M
2
2 , µ2, m2

ẽL
, m2

ν̃e
)
]

, (8)

where explicit formulae for the F functions are given in Ref. [53]. For large sfermion masses,
F ∼ m−4

f̃
. To calculate the neutron EDM, we must model the structure of the neutron. We

adopt the non-relativistic quark model, in which the neutron EDM is dn = (4dd − du)/3.
Contributions to the quark EDMs are similar to those for the electron, with the exception
that there are additional contributions from squark-gluino diagrams. Note that, since dd ∝
tan β, the neutron EDM is also enhanced for large tan β.

The standard model predicts vanishing EDMs, to foreseeable experimental accuracy. At
present, no anomaly is seen in EDM measurements. From the measurement de = (0.18 ±
0.12 ± 0.10) × 10−26e cm [54], we obtain the constraint |de| ≤ 0.44 × 10−26 e cm, where
the right-hand side is the upper bound on |de| at 90% C.L. For the neutron, the current
90% C.L. limit is |dn| ≤ 0.63× 10−25 e cm [55].

The present constraints on EDMs severely restrict the possible values of θCP. In Figs. 3
and 4, we plot the maximal allowed values of θCP given the constraints of the electron and
neutron EDMs, respectively. The EDMs are calculated in the exact mass eigenstate basis.
We see that current constraints from the electron and neutron are roughly comparable. For
sub-TeV values of m0, θCP is constrained to be less than of order 10−3 to 10−2, depending on
tan β. In the absence of an understanding of the origin of this phase, this appears to require
a strong fine-tuning. For the focus point scenario with multi-TeV m0, these constraints may
be relaxed by over an order of magnitude. In the tanβ = 10 case, O(0.1) phases are allowed.

It is important to note that there is some sensitivity to the assumed top mass. For larger
top quark mass, but still within the experimental bounds, the excluded region from chargino
mass limits moves to larger m0, and so even larger scalar masses are allowed. In Fig. 5, we
show the CP -violating phases allowed by the electron EDM, but with an assumed top quark
mass of mt = 179 GeV, within the 1σ experimental bound. As m0 now extends to over 3
TeV, even larger phases are allowed. A similar improvement is found in the neutron EDM
case.
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FIG. 3. Contours of the maximum value of sin θCP allowed by the electron EDM constraint
|de| ≤ 0.44 × 10−26 e cm.

FIG. 4. As in Fig. 3, but for the neutron EDM constraint |dn| ≤ 0.63 × 10−25 e cm.

IV. MAGNETIC DIPOLE MOMENT OF THE MUON

Supersymmetric particles also contribute radiatively to magnetic dipole moments
(MDMs). Such contributions are even more robust than EDMs, as they require neither
CP nor flavor violation. At present the most stringent constraint comes from the muon’s
anomalous MDM aµ = 1

2
(g − 2)µ, which is the coefficient of the operator

LMDM = aµ
e

4mµ
µ̄σαβµ Fαβ . (9)

The supersymmetric contributions are similar to those discussed above for the elec-
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FIG. 5. As in Fig. 3, but for mt = 179 GeV.

tron EDM, arising from slepton-neutralino and sneutrino-chargino loops. In the large tan β
regime, they take the form

aSUSY
µ ≈ m2

µ µ tanβ
[
g2
1M1F1(M

2
1 , µ2, m2

µ̃L
, m2

µ̃R
) + g2

2M2F2(M
2
2 , µ2, m2

µ̃L
, m2

ν̃µ
)
]

, (10)

where in this section, we assume all parameters real. The F functions are as in Eq. (7).
The anomalous MDM of the muon has been measured at CERN [56] and

Brookhaven [57,58]. The current world average is aexp
µ = (116 592 05 ± 45) × 10−10 [58],

consistent with the standard model. The uncertainty is statistics dominated, and will
be reduced by the ongoing Brookhaven experiment E821. With data already being col-
lected, the uncertainty should be reduced to ∼ 7× 10−10, and the ultimate goal of E821 is
∆aµ ∼ 4 × 10−10 [59]. The current standard model prediction for the muon’s anomalous
MDM is ath

µ = (116 591 62±8)×10−10 [60]. The uncertainty in the prediction is dominated
by the difficulty of evaluating the hadronic vacuum polarization contribution, but is being
reduced by improved low energy data. If the theoretical prediction is brought under control,
a reasonable 2σ limit in the near future is 8× 10−10.

The supersymmetric contribution to the muon anomalous MDM aSUSY
µ , in the mass

insertion approximation [53], is given in Fig. 6. As expected, the contribution is enhanced for
large tan β, and highly suppressed by heavy sleptons in the focus point region. A measured
deviation is consistent with focus point supersymmetry, but only for large tanβ. On the
other hand, if no deviation is found, the muon’s anomalous MDM will be a strong argument
for heavy superpartners. (Recall that the muon MDM is flavor- and CP-conserving, so
cannot be eliminated by, for example, scalar degeneracy or small phases.) For moderate
tan β, considerations of dark matter relic density eliminate the moderate m0 possibility
(see below), and so a muon MDM consistent with the standard model would require m0

above a TeV. For large tanβ, even such a robust cosmological constraint is unnecessary: for
tan β = 50, the absence of an anomaly would require m0

>∼ 1.5 TeV, well into the focus
point region.
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FIG. 6. The muon anomalous MDM aSUSY
µ in units of 10−10.

V. B → Xsγ

It is well-known that the supersymmetric contributions to B → Xsγ may be large. In
the standard model, this flavor-violating transition takes place only at one-loop through a
W boson. In supersymmetric theories, there are a variety of additional one-loop contribu-
tions [61], most importantly those from charged Higgs- and chargino-mediated processes.
These are both enhanced by large tanβ in focus point supersymmetry. For the chargino di-
agrams, this is true for the standard reason of enhanced Yukawa couplings. For the charged
Higgs diagram, it holds because large tanβ implies small charged Higgs masses. At small
tan β, mH+ is of order the scalar superpartner masses, and so is well above 1 TeV in the
focus point region. However, for large tanβ, by the approximate up-down symmetry, both
m2

Hu
and m2

Hd
have weak scale focus points, and so mH+ is typically of the order of 100 GeV.

We evaluate B(B → Xsγ) as follows. As we are primarily interested in the case where
there is a hierarchy between the superpartner masses and the weak scale, we are careful not
to decouple the supersymmetric contributions at the weak scale [62]. Rather, we evaluate
the leading order supersymmetric contributions [61] at the superpartner scale (defined as
the geometric mean of the two top squark masses) and evolve them to the weak scale,
using leading order anomalous dimension coefficients. At the weak scale, we match these
contributions to the effective Hamiltonian

Heff = −4GF√
2

V ∗
tsVtb

8∑
i=1

CiOi . (11)

We use next-to-leading order matching conditions for the standard model [63] and charged
Higgs [64] contributions.

The weak scale Wilson parameters Ci must then be evolved to the low energy scale
µb with the NLO anomalous dimension matrix [65], and B(B → Xsγ) is then evaluated
using NLO matrix elements [66], incorporating the leading order QED and electroweak
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FIG. 7. B(B → Xsγ) in units of 10−4 for µ > 0.

radiative corrections [67,68]. These results have been included in a simple parameterization
of Ref. [68], which we adopt, taking µb = mb and a photon energy cutoff parameter δ = 0.9.

The best current measurements of B → Xsγ from CLEO [69] and ALEPH [70] may
be combined in a weighted average of B(B → Xsγ)exp = (3.14 ± 0.48) × 10−4 [68]. It is
expected that these measurements will be significantly improved at the B factories, where
large samples of B mesons will greatly reduce statistical errors. At present, the standard
model prediction is B(B → Xsγ)SM = (3.29± 0.30)× 10−4 [68]. The theoretical uncertainty
is less likely to improve substantially. We estimate that in the near future, both theoretical
and experimental uncertainties will be ∼ 0.3 × 10−4. Combining these errors linearly, the
resulting 2σ limit will be 2.1× 10−4 < B(B → Xsγ) < 4.5× 10−4.

In Figs. 7 and 8, we plot contours of B(B → Xsγ) for positive and negative µ,
respectively.4 The charged Higgs contribution is always constructive with the standard
model. For µ < 0, the chargino contribution is also constructive, and predicted B → Xsγ
rates are enhanced. For µ > 0, the chargino contribution flips sign, and may cancel the
charged Higgs contribution.

We see that for the foreseeable future, focus point supersymmetry predicts no measurable
deviation from the standard model, and both positive µ and negative µ (with moderate tan β)
are consistent if no deviation is seen. Of course, if no deviation is found, supersymmetric
models with sub-TeV scalar mass m0 are also consistent for moderate and low tanβ.

4We do not show results for tan β = 50 and µ > 0. For such parameters, difficulties in obtaining
correct electroweak symmetry breaking exclude much of the parameter space, and for the remaining
region, the prediction for B → Xsγ is always very large and excluded by current bounds.
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FIG. 8. As in Fig. 7, but for µ < 0 and tan β = 10.

VI. THE MASS OF THE LIGHT HIGGS BOSON

The implications of focus point supersymmetry for the light Higgs boson are of special
interest, given the present bound of mh > 113.5 GeV, and the recent observation at LEP of
a 2.9σ excess of events consistent with the production of a standard model-like Higgs boson
with mass mh = 115 GeV [71,72].

As is well-known, in the minimal supersymmetric model, the light Higgs boson mass
satisfies mh

<∼ 130 GeV. This limit is saturated in regions of parameter space, where, for
example, trilinear A parameters are adjusted to give maximal left-right scalar mixing in the
third generation squarks. Such regions are, however, extraordinarily unnatural, requiring
extreme fine-tuning in the electroweak potential [18]. In fact, in natural regions of parameter
space with m0

<∼ 1 TeV, Higgs boson masses as high as those presently preferred are already
highly constraining. In Ref. [73], the authors concluded that a Higgs mass of 115 GeV,
along with the assumption of a suitable Bino-like dark matter candidate, implied lower
limits on gaugino masses, with strong (negative) implications for supersymmetry searches
at the Tevatron. In Ref. [74], similar considerations led the authors to consider, among other
possibilities, large CP violating phases, which much necessarily cancel to high accuracy in
EDMs.

In focus point supersymmetry, all squarks and sleptons, including those of the third
generation, may be above 1 TeV without significantly increased fine-tuning in the electroweak
potential. This is in contrast to all other proposed models, including those that also make
use of RG effects to resolve the tension between low energy constraints and naturalness,
but which, while allowing heavy first and second generation scalars, require light third
generation superpartners [75]. As the dominant radiative contributions to the light Higgs
boson mass are logarithmically dependent on top and bottom squark masses, this fact has
strong implications for the Higgs boson. In Fig. 9, we present contours of constant Higgs
mass, including the full one-loop radiative corrections as in Ref. [34]. We see that Higgs
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FIG. 9. Contours of Higgs mass mh in GeV. Regions with allowed and preferred dark matter
relic density are also shown. In the light (yellow) shaded region, the thermal relic density of the
neutralino LSP is 0.025 <∼ Ωχh2 <∼ 1, and in the dark (blue) shaded region it is in the preferred
range 0.1 <∼ Ωχh2 <∼ 0.3. The unshaded region above the preferred band has Ωχh2 >∼ 1 and is
excluded.

masses at or above 115 GeV are naturally and simply accommodated in the focus point
region. In fact, a Higgs boson with mass consistent with present bounds is an inescapable
consequence of focus point supersymmetry with multi-TeV squarks. Varying A0 within a
generous range allowed by naturalness does not change these conclusions [18]. In Fig. 10 we
illustrate the dependence on the top quark mass. Variations of mt within its 1σ experimental
uncertainty give rise to ∼ 2 GeV variations in mh.

Note that the focus point region possesses a suitable neutralino dark matter candidate,
a Higgsino-gaugino mixture. In Fig. 9, we show also the regions with good thermal relic
density. In conventional scenarios, with m0

<∼ 1 TeV assumed, the LSP is Bino-like, and the
thermal relic density constrains m0 to values of at most∼ 200 GeV. The radiative corrections
from m0 to the Higgs boson mass are therefore small, and present bounds already require
large M1/2. However, as noted in Refs. [25,26], the assumption of a Bino-like LSP is far
from robust, and is violated even in the simple framework of minimal supergravity. From
Fig. 9, we see that a cosmologically attractive region exists in the focus point region, with
m0 > 1 TeV. In this region, the LSP is a gaugino-Higgsino mixture, and its relic density
may also be in the preferred range 0.1 <∼ Ωχh2 <∼ 0.3. The focus point region therefore
provides an excellent dark matter candidate in which the Higgs boson mass is naturally in
the currently preferred range.

VII. ON NATURALNESS

In the preceding sections, we have found several phenomenological virtues of focus point
scenarios with respect to proton decay, the supersymmetric flavor and CP problems, and
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FIG. 10. Contours of Higgs boson mass mh in GeV in the (m0,mt) plane for fixed
M1/2 = 300 GeV, A0 = 0, and µ > 0.

light Higgs boson mass. Such attractive features would be offset by the ugliness of a fine-
tuned electroweak scale, were it not for the focus point mechanism, which makes heavy
scalars natural. In this section, we attempt to clarify several issues concerning naturalness
by comparing our prescription with several others in the literature. Naturalness has been
discussed in a large number of studies. In the following, we do not attempt a comprehensive
review, but rather highlight various similarities and differences between our prescription and
selected other studies [76–83].

All definitions of naturalness are open to quantitative ambiguities. However, this fact
should not be allowed to obscure the many strong qualitative differences that, as we will
see, exist between various naturalness prescriptions. The claim that the focus point renders
multi-TeV scalars natural is qualitatively novel, and leads to qualitatively new implications
for many searches for supersymmetry. For this reason, it is worthwhile to identify and
explore the underlying differences between our prescription and others in the literature.
As a by-product, we also highlight many issues in defining naturalness that are seldom
addressed.

A. Our Prescription

We begin by briefly reviewing our naturalness prescription. Readers interested in a more
careful and detailed description are referred to Refs. [17,18]. The five step prescription is
the following:
(1) Choose a supersymmetric model framework. For example, if one chooses minimal su-
pergravity, one assumes input parameters {m0, M1/2, A0, tanβ, sign(µ)} and adopts all the
assumptions encapsulated in these 4+1 parameters.
(2) For a given set of input parameters, determine all weak scale parameters of the theory
consistent with experimental data and RG evolution.
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(3) Choose some set of parameters to be free, continuously variable, independent, and
fundamental. In minimal supergravity, we choose the GUT scale parameters {ai} =
{m0, M1/2, A0, B0, µ0}. Note that we have included all parameters expected to be intimately
related to supersymmetry breaking, but none of the others.
(4) For each fundamental parameter, define the sensitivity coefficient [76]

ci ≡
∣∣∣∣∣∂ lnm2

Z

∂ ln ai

∣∣∣∣∣ =

∣∣∣∣∣ ai

m2
Z

∂m2
Z

∂ai

∣∣∣∣∣ . (12)

(5) Finally, define the overall measure of fine-tuning to be

c = max{ci} . (13)

B. Sensitivity Coefficients

The sensitivity coefficients of Eq. (12) are the kernel of most naturalness prescriptions.
They were first advanced as a tool for quantifying naturalness by Ellis, Enqvist, Nanopoulos,
and Zwirner [76]. These authors analyzed an E6 model with superpotential W = htQ3U

c
3H+

λHH̄N +kDDc, where the first term is the top quark Yukawa coupling, N is a singlet Higgs
field, H and H̄ are the standard Higgs doublets, and D and Dc are exotic down-type quarks.
They then defined sensitivity coefficients ci = |∂ lnx/∂ ln ai|, where x ≡ 〈N〉/〈H〉, and used
cλ, ck < 5 as a reasonable requirement for natural regions of parameter space.

Aside from a difference in the framework being examined, our naturalness definition
differs from this one only in what parameter has been chosen to represent the weak scale
(their parameter x vs. our m2

Z). This difference is minimal, and these prescriptions are
identical in spirit. Note that the sensitivity to the standard model parameter ht was not
included.

C. Model Dependence and the Choice of Fundamental Parameters

In another pioneering study, the sensitivity coefficients were then used by Barbieri and
Giudice to examine naturalness in the context of minimal supergravity [77]. In that paper, an
overall fine-tuning parameter similar to that defined in Eq. (13) was used: the sensitivities to
all supersymmetry-breaking parameters (and µ0) were included, but sensitivities to standard
model parameters were not. These authors considered a range of ht and ignored the effects
of hb. For particular ht, the weak scale was found to be insensitive to variations in m0,
and in fact, they found singularities in figures plotting the naturalness limits on m0. These
singularities result from the same numerical ‘coincidence’ responsible for the focus point
mechanism.5 However, although the sensitivity to ht was not included in the numerical
analysis, these authors expected a full analysis of naturalness to include this sensitivity [85],

5This numerical fact can also be deduced from earlier papers studying the RG behavior of minimal
supergravity. (See, for example, Ref. [84].)
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and noted that the singularities of the figures would be eliminated if the sensitivity to ht

were included. (The sensitivity of the weak scale to the top Yukawa coupling was considered
in more detail in later studies — see, for example, Ref. [81].) For this reason, these authors
did not claim that multi-TeV scalars could be natural. Of course, at that time, the top
quark mass was only indirectly bounded, and for most possible masses, the inclusion of cht

made no qualitative difference to the results.
After the discovery of the top quark and the measurement of its mass, studies of natural-

ness and the RG properties of minimal supergravity again found this numerical coincidence
(see, e.g., Refs. [86,83]). However, none of these studies interpreted these results as allowing
natural multi-TeV scalars. This claim was first made in Ref. [17], where the issues relevant
to the inclusion or exclusion of cht were carefully addressed, the naturalness bounds were
investigated numerically using a full two-loop analysis, and the top mass required for a weak
scale focus point was found to coincide (within experimental uncertainties) with the mea-
sured top mass. In this paper, the general requirements for focus point supersymmetry were
also derived, and the potential for this behavior to solve and ameliorate the supersymmetric
flavor and CP problems was noted.

The peculiar value of the top quark mass thus highlights a question, which, for any
other mass, would be of only academic interest: should the sensitivity to ht (and other
standard model parameters) be included in calculations of fine-tuning? Note that whether
a parameter has been measured or not has no bearing on whether its sensitivity coefficient
should be included. For example, if in the future the µ parameter is measured to be 1010 GeV
to arbitrarily high accuracy, but our theoretical understanding of electroweak symmetry
breaking has not advanced, cµ should still be included in measures of naturalness, and the
weak scale should be considered (highly) fine-tuned. (Not all naturalness studies take this
view — see below.)

To address this question, we must first acknowledge the inescapable model dependence
in any naturalness prescription. In any supersymmetry study, some fundamental framework
must be adopted. In studies of other topics, however, there exists, at least in principle,
the possibility of a model-independent study, where no correlations among parameters are
assumed. This model-independent study is the most general possible, in that all possible
results from any other (model-dependent) study are a subset of the model-independent
study’s results. In studies of naturalness, however, the correlations determine the results,
and there is no possibility, even in principle, of a model-independent study in the sense
described above. As an example, consider a study investigating models where the minimal
supergravity assumptions, in particular, the assumption of scalar universality, are relaxed.
In such models, the correlations required by the focus point mechanism are absent. This
study therefore misses this possibility, and should conclude that it is never possible to raise
all scalar masses far above the TeV level (although the scalar masses of the first and second
generations may be as large as O(10 TeV)).

The model dependence of naturalness is present even in the most general statements
concerning fine-tuning. It is often assumed that, since the weak scale is ∼ 100 GeV, super-
symmetry parameters of order 100 GeV will yield a 1 part in 1 fine-tuning in the electroweak
scale. However, this is at odds with a low energy effective field theory perspective. From
such a point of view, the Higgs mass receives radiative corrections ∆m2

h ∼ m2
SUSY/16π2, so

demanding a 1 part in 1 fine-tuning would apparently allow supersymmetric masses of order

17



mSUSY ∼ 1 TeV. The resolution is that the first statement implicitly assumes a fundamental
theory at some high scale, such as MGUT, with fundamental parameters defined at this high
scale. The radiative correction is then more precisely ∆m2

h ∼ m2
SUSY ln(MGUT/MWeak)/16π2,

and the large logarithm offsets the loop factor suppression, yielding a 1 part in 1 fine-tuning
for 100 GeV supersymmetry masses.

What about the top quark Yukawa? From a low energy point of view, one should include
all the parameters of the Lagrangian, including ht. However, by assuming some underlying
high energy motivation by defining our parameters at MGUT, we have already abandoned a
purely low energy perspective. Once we consider the high energy possibilities, the case is
not so clear. For example, ht may be fixed to a specific value (or one of a set of discrete
values) in a sector of the theory unrelated to supersymmetry breaking. An example of this
is weakly coupled string theory, where ht may be determined by the correlator of three
string vertex operators and would therefore be fixed to some discrete value determined by
the compactification geometry.6 In such a scenario, it is clearly inappropriate to artificially
vary ht continuously to determine the sensitivity of the weak scale to variations in ht. This
and other examples leading to the same conclusion were previously described in Ref. [18].

Clearly, no definitive answer can be given without improved knowledge of the fundamen-
tal theories of flavor and supersymmetry breaking. Without this knowledge, neither choice
is beyond reproach. However, given the plausible suggestions from high energy frameworks
that the standard model parameters may be fixed in ways unrelated to supersymmetry
breaking, it is well worth considering the implications of relaxing the requirement that the
weak scale be insensitive to variations in standard model couplings. Once we take this ap-
proach, we find it highly suggestive that the measured value of the top quark mass, along
with the simplest of scalar mass boundary conditions, is exactly what is required to decouple
scalars naturally and relieve the longstanding low energy problems of supersymmetry.

D. Sensitivity vs. Fine-tuning

The approach of the early papers was criticized in a series of papers by Anderson and
Castaño [78]. They pointed out that it is possible in certain cases that all possible choices
of a fundamental parameter yield large sensitivities. They argued that in such cases, only
relatively large sensitivities should be considered fine-tuned, and drew a distinction between
the sensitivity parameters ci defined above, and fine-tuning parameters, which they defined
as γi ≡ ci/c̄i, with c̄i an average sensitivity. These γi were then combined to form an overall
fine-tuning parameter.

We agree in principle with these arguments. In addition to the virtues noted by Anderson
and Castaño, the normalization step has the feature that the fine-tuning is then insensitive
to whether the fundamental parameter is defined to be m0 or m2

0, for example. However,

6Of course, one might argue that string theory may fix all parameters, including those that break
supersymmetry. Taken to an extreme, then, no variables are free, and no definition of naturalness
is possible. Such an approach is equivalent to the strongest possible anthropic principle, and no
more constructive.
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the averaging procedure may also mask important features. In their study, Anderson and
Castaño propose two possible definitions of c̄i and show that they yield roughly equivalent
results. One of these definitions is c̄i =

∫
ai

ci, where, as indicated, the average is taken over
a line in parameter space, varying ai while holding all other parameters fixed. Adopting this
prescription, in minimal supergravity for a fixed m0, say, γm0 will be qualitatively the same
for top Yukawa couplings both at the focus point value and far from it: in the latter case,
the sensitivity coefficients cm0 will be much larger, but so will c̄m0 . We believe this hides a
physical effect — it is clear that for the focus point top Yukawa coupling, the weak scale is
much less sensitive to variations in m0, and this fact should be reflected in any definition of
naturalness.

To fix this, while preserving the principle virtue of the sensitivity vs. fine-tuning dis-
tinction, one could define c̄i ≡ ∫

{m0,M1/2,...,ht,...} ci, where one averages over all of parameter

space, including points with different ht. This then introduces one overall normalization
factor for each ci, and we have checked that our results are not qualitatively altered by such
a procedure. It is clear, however, that this modified Anderson-Castaño prescription requires
a definition of averaging region, which introduces additional subjectivity and complications.
Given that our results are not substantially changed, we do not include this refinement.

E. Naturalness vs. Likelihood

Finally, an alternative definition of sensitivity coefficient has been proposed in a series
of papers [79,80]. In these studies, the definition of Eq. (12) is replaced by

ci ≡
∣∣∣∣∣∆ai

m2
Z

∂m2
Z

∂ai

∣∣∣∣∣ , (14)

where ∆ai is the experimentally allowed range of ai. The intent of this alternative definition
is to encode the idea that naturalness is our attempt to determine which values of parameters
are most likely to be realized in nature.

To contrast this definition with the conventional definition, consider, for example, the
hypothetical scenario described above, in which our theoretical understanding of super-
symmetry has not improved, but the µ parameter is measured to be 1010 GeV with very
high accuracy. In the standard definition of sensitivity coefficient, Eq. (12), the model is
fine-tuned. In our view, this is as it should be: such a large µ parameter signals a highly
unnatural situation, and would strongly suggest a deficiency in our theoretical understand-
ing. However, by the definition of Eq. (14), ∆µ is very small, and so the electroweak scale
is not fine-tuned, even though it is smaller than µ by many orders of magnitude.

Naturalness is not simply a measure of our experimental knowledge of the parameters
of nature. Rather it is a measure of how well a given theoretical framework explains the
parameters realized in nature. It is perfectly possible for experimentally likely ranges of
parameters to be unnatural — this is what the gauge hierarchy and cosmological constant
problems are! — and to think that this unnaturalness can be reduced by improved experi-
mental measurements misses this essential point.

While this is perhaps the most fundamental difference between these papers and our
approach, we conclude with some additional comments concerning the most recent study of
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Romanino and Strumia [80], as this specifically addresses the question of the naturalness of
multi-TeV scalars.

Naturalness must be calculated in a well-defined framework. For example, if we assume
minimal supergravity, the focus point works because the initial value of m2

Hu
is m2

0, and the
RG contribution is roughly −m2

0, so the weak scale value vanishes, independent of m0. The
authors of Ref. [80] ask, “is a cancellation between [m0] and the radiative contributions to it
more ‘natural’ than a cancellation between different soft terms?” In our approach, the answer
is yes, because in minimal supergravity, the first two are controlled by the same parameter,
whereas different soft terms cancel only for certain choices of two or more parameters. Stated
in another way, the assumptions of minimal supergravity guarantee this cancellation just
as the assumptions of local quantum field theory guarantee that the electron’s charge is
canceled by the positron’s, and it makes no more sense to think of the former cancellation
as fine-tuned than the latter — it is part of the assumed framework.7 Of course, contrived
frameworks should be considered less promising, but once the framework is adopted, one
should not vary from its underlying assumptions.

The authors of Ref. [80] also work in the context of minimal supergravity. However, they
consider the sensitivity of the focus point mechanism to “uncertainties associated with an
unknown sparticle spectrum between 200 GeV and 1 TeV.” In our approach, the weak scale
threshold corrections are fixed by the input parameters, and there is no remaining freedom
for ad hoc adjustments of the sparticle spectrum. All threshold corrections are therefore
already included in our analysis of sensitivity coefficients and in our results.

Finally, Romanino and Strumia (and others [27]) concentrate their discussion on the case
tan β ≈ 10, which may leave an impression that the focus point mechanism is operational
only for that specific value of tan β. Ref. [80] also analyzed the effects of uncertainties in
ht(MGUT) on the focus point scenario. We reiterate that the RG trajectories of m2

Hu
focus at

the weak scale for any value of tanβ >∼ 5. This was demonstrated numerically in Ref. [18];
in the Appendix, we prove it analytically. Thus the naturalness of multi-TeV scalars is
guaranteed for virtually all values of tanβ allowed by present constraints on the light Higgs
boson mass.

The tanβ independence of the focus point is far from trivial. The top quark mass and
tan β >∼ 5 fix the top quark Yukawa coupling at the weak scale. However, as tan β increases
from moderate to large values, hb becomes relevant and has two effects: first on the RG
evolution of ht, and, second, directly on the RG trajectories of the top squark masses and
m2

Hu
. It is easy to see that these effects oppose each other. A non-negligible hb increases

ht(MGUT) and the average value of ht through its RG evolution, which tends to drive m2
Hu

more negative. On the other hand, larger ht and hb decrease the average top squark mass,
which pushes m2

Hu
less negative.

7To be clear, we note that in the case of minimal supergravity and the focus point, the cancellation
is, of course, not perfect, in contrast to the case of local quantum field theory and particle/anti-
particle charges. However, for top quark masses within the current experimental bounds, the
cancellation is complete enough that the sensitivity to multi-TeV m0 is below or of order the
sensitivity to the other O(100 GeV) fundamental parameters, and far below what might naively
be expected.
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What is remarkable, however, is that at one-loop, ignoring negligible hypercharge effects,
these effects exactly compensate each other, so that the focus point remains at the weak scale.
This is demonstrated in the Appendix, where we show that the focus point scale may be
written in terms of ht(MWeak) only, without reference to ht(MGUT) or the RG trajectory of
hb. Thus, the variation of ht(MGUT) is irrelevant to analyses of the focus point: the focus
point mechanism is guaranteed for all tanβ >∼ 5, even though the RG trajectories of ht, hb

and the third generation squark masses may vary widely as tan β varies in this range.

VIII. CONCLUSIONS

Focus point supersymmetry is motivated by the remarkable ‘coincidence’ that the pre-
cisely measured top quark mass implies that multi-TeV scalars are natural, given certain
simple high scale boundary conditions. In this paper, we have considered several phenomeno-
logical consequences of focus point supersymmetry. We find that the possibility of all scalar
masses being naturally above 1 TeV has a number of desirable features:

• The difficulties of many GUT models in accommodating both gauge coupling unifica-
tion and proton decay constraints are reduced.

• Constraints from EDM measurements on unknown phases are less stringent by one to
two orders of magnitude, and current constraints may be satisfied with O(0.1) phases.

• The Higgs boson mass is predicted to be at or above 115 GeV in focus point scenarios,
consistent with current constraints and the recent evidence for a 115 GeV Higgs boson
at LEP. Such large masses are typically difficult to obtain without fine-tuning, but
are achieved naturally in focus point supersymmetry through heavy top and bottom
squarks, without the need to appeal to large CP violating phases or heavy gauginos.

In addition, we analyzed the implications of focus point supersymmetry for two other impor-
tant constraints on supersymmetric theories, the muon MDM and B → Xsγ. In particular,
for the muon MDM, while an observable deviation from the standard model is consistent with
focus point supersymmetry with high tanβ, a near future measurement consistent with the
standard model will exclude conventional regions of minimal supergravity parameter space,
and will strongly prefer focus point scenarios.

Finally, we have concluded this study with an extended discussion of various naturalness
prescriptions. We have identified and highlighted a number of key differences between our
prescription and others in the literature. By far the most ambiguous and important issue,
in our view, is the question of whether one should include sensitivities to standard model
couplings in attempts to quantify the success of supersymmetry in solving the gauge hier-
archy problem. We have identified several scenarios in which such sensitivities should not
be included. Perhaps most suggestive, however, is the fact that by excluding the sensitivity
to standard model parameters, the measured top quark mass implies that multi-TeV scalars
are natural for the simplest possible boundary condition of universal scalar masses. If this
is more than a coincidence, the top quark mass is our hint that the low energy problems of
supersymmetry are but a mirage, and the mass scale of all squarks and sleptons actually
lies well above a TeV.
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APPENDIX: DEPENDENCE OF FOCUS POINT ON YUKAWA COUPLINGS

In this Appendix, we show that in minimal supergravity, the focus point scale is deter-
mined only by the gauge couplings and the weak scale value of the top Yukawa coupling
ht. More precisely, we show that the renormalization scale at which the m2

Hu
contours meet

may be written only in terms of ht at the weak scale, with no reference to the rest of the top
quark Yukawa RG trajectory (e.g., its value at MGUT) or to the bottom Yukawa coupling hb.
This demonstrates that if the focus point is at the weak scale for, say, tan β = 5, it remains
there for all tanβ > 5. In Ref. [18] this was shown analytically for hb � ht (moderate
tan β) and hb = ht (high tanβ), and also numerically for all tanβ. Here we demonstrate
this analytically for all tanβ, neglecting the tau Yukawa coupling, but making no assump-
tions about the relative magnitudes of ht and hb. An abbreviated version of this proof was
presented in Ref. [19].

To analyze the focus point, it is convenient to define

t ≡ 1

2π
ln

(
Q

MGUT

)
, (A1)

αi ≡ g2
i

4π
, (A2)

Yi ≡ h2
i

4π
, (A3)

m2
i ≡ m2

i |p + ∆2
i , (A4)

where Q is the renormalization scale,8 gi and hi are gauge and Yukawa couplings, respec-
tively, and m2

i are scalar masses. Following the notation of Refs. [13,17,18], we separate the
scalar mass into m2

i |p, a particular solution to the RG equations, and ∆2
i , the remaining

homogeneous part.
We now keep only the top and bottom Yukawa couplings, and neglect the small hyper-

charge difference in the Yt and Yb RG equations. With these approximations, the one-loop
RG equations for the couplings are

8Notice that we have rescaled the variable t relative to its conventional definition, in order to
simplify the equations to follow.
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α̇3 = −3α2
3 , α̇2 = α2

2 , α̇1 =
33

5
α2

1 , (A5)

Ẏt = Yt [6Yt + Yb − r(α)] , (A6)

Ẏb = Yb [Yt + 6Yb − r(α)] , (A7)

where ˙ ≡ d/dt and r(α) ≡ 16
3
α3 + 3α2 + 13

15
α1 is a function of gauge couplings only. The

homogeneous scalar mass evolution is given by

∆̇
2

= N∆2 , (A8)

where

N =




3Yt 3Yt 3Yt 0 0
2Yt 2Yt 2Yt 0 0
Yt Yt Yt + Yb Yb Yb

0 0 2Yb 2Yb 2Yb

0 0 3Yb 3Yb 3Yb




, (A9)

and ∆2 =
[
∆2

Hu
, ∆2

U3
, ∆2

Q3
, ∆2

D3
, ∆2

Hd

]T
, with U3, Q3, and D3 the third generation squark

multiplets, and Hu and Hd the up- and down-type Higgs multiplets.
Equation (A8) is a set of five coupled differential equations, but the simple form of N

implies that the RG evolution of three degrees of freedom is trivial. To make this explicit,
define

∆2(t)

m2
0

≡ c1(t)




3
2
1
0
0




+ c2(t)




0
0
1
2
3




+ c3(t)




1
−1

0
0
0




+ c4(t)




0
1

−1
1
0




+ c5(t)




0
0
0

−1
1




, (A10)

where we have factored out an overall mass scale m0 to make the ci dimensionless. Equa-
tion (A8) then reduces to

ċ1 = Yt(6c1 + c2) ,

ċ2 = Yb(c1 + 6c2) , (A11)

and ċ3 = ċ4 = ċ5 = 0.
We now solve these equations in full generality. Equations (A11) form a linear homo-

geneous system of first-order ordinary differential equations with variable coefficients. No
general method of solution exists for such systems [87]. However, in this case, the vari-
able coefficients Yt and Yb satisfy Eqs. (A6) and (A7), and this allows us to integrate these
equations after a well-chosen ansatz for the form of the ci.

Let us make a change of variables [19]

c1(t) = c0
1 + Yt(t)p(t) , (A12)

c2(t) = c0
2 + Yb(t)q(t) , (A13)
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where c0
i ≡ ci(0) and the boundary condition for the new variables p and q is p(0) = q(0) = 0.

Substituting these forms for c1 and c2 into Eqs. (A11) and using the Yukawa RG Eqs. (A6)
and (A7), we find

ṗ = Yb(q − p) + rp + 6c0
1 + c0

2 , (A14)

q̇ = Yt(p− q) + rq + 6c0
2 + c0

1 . (A15)

The difference of Eqs. (A14) and (A15) yields a simple first order linear inhomogeneous
differential equation for p− q

d

dt
(p− q) = − (Yt + Yb − r)(p− q) + 5(c0

1 − c0
2) , (A16)

which integrates to [19]

p− q = 5(c0
1 − c0

2)e
−

∫
(Yt+Yb−r)

∫
e
∫

(Yt+Yb−r) . (A17)

To solve for p or q, substitute Eq. (A17) into Eq. (A14) or Eq. (A15), respectively. The
resulting differential equation is again easily solved, and the solution for p is

p(t) = (6c0
1 + c0

2)e
∫

r
∫

e−
∫

r − 5(c0
1 − c0

2)e
∫

r
∫ [

Ybe
−

∫
(Yt+Yb)

∫
e
∫

(Yt+Yb−r)
]

. (A18)

The final solution for c1(t) is then [19]

c1(t) = c0
1 + Yt(t)e

∫ t

0
dt1r(t1)

{
(6c0

1 + c0
2)

∫ t

0
dt1e

−
∫ t1
0

dt2r(t2)

− 5(c0
1 − c0

2)
∫ t

0
dt1Yb(t1)e

−
∫ t1
0

dt2[Yt(t2)+Yb(t2)]
∫ t1

0
dt2e

∫ t2
0

dt3[Yt(t3)+Yb(t3)−r(t3)]

}
, (A19)

and c2(t) is obtained by interchanging t ↔ b, and 1 ↔ 2.
The focus point scale tF is given by

∆2
Hu

(tF ) = c3 + 3c1(tF ) = 0 . (A20)

In the case of a universal scalar mass, the initial conditions are ci(0) =
[3/7, 3/7,−2/7,−1/7,−2/7]. Equation (A19) then becomes

c1(t) =
3

7
+ 3Yt(t)e

∫ t

0
dt1r(t1)

∫ t

0
dt1e

−
∫ t1
0

dt2r(t2) . (A21)

Note the great simplification following from c0
1 = c0

2. The focus point is therefore fixed by
the constraint

Yt(tF )e
∫ tF
0

dt1r(t1)
∫ tF

0
dt1e

−
∫ t1
0

dt2r(t2) = −1

9
. (A22)

We see that tF depends on the entire RG trajectories of the gauge couplings and on Yt

at the focus point, but is independent of the rest of the Yt trajectory and is also entirely
independent of Yb. For the physical top mass mt ≈ 174 GeV and tan β ≈ 5, we know
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that the the focus point is at the weak scale [17]. As we raise tan β, Yt(tF ) = Yt(tWeak)
remains approximately constant to reproduce the physical top quark mass, but Yb increases.
Eventually, Yb will be large and the RG trajectory of Yt (and, of course, Yt(MGUT)) will be
modified accordingly. The scalar mass RG trajectories are then also modified. Remarkably,
the analysis above shows that despite this, the focus point of the m2

Hu
trajectories remains

at the weak scale. The focus point therefore remains at the weak scale for all tan β >∼ 5,
and, in particular, is independent of the GUT scale value of Yt, as long as Yt at the weak
scale remains fixed, as it must to be consistent with the measured top quark mass.

With the analytic solution at hand, it is now straightforward to generalize the focus
point discussion to the case of scalar mass non-universality. Using the empirical relation
Eq. (A22), we can write the focus point condition in the form

3c0
1 − c0

2 + 3c3 = 0 . (A23)

Any set of non-universal boundary conditions satisfying Eq. (A23) will exhibit a focus point
at the weak scale, at least for a certain range of (moderate) values of tanβ. Furthermore, if
in addition

c0
1 − c0

2 = 0 , (A24)

then a weak scale focus point exists for any value of tan β >∼ 5. The most general set of
non-universal scalar boundary conditions satisfying both Eqs. (A23) and (A24) is [18]




m2
Hu

m2
U3

m2
Q3

m2
D3

m2
Hd




= m2
0




1
1 + x
1 − x
1 + x − x′

1 + x′




(A25)

with both x and x′ arbitrary.
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