43 research outputs found

    Portable and platform‐independent MR pulse sequence programs

    Get PDF
    Purpose: To introduce a new sequence description format for vendor‐independent MR sequences that include all calculation logic portably. To introduce a new MRI sequence development approach which utilizes flexibly reusable modules. Methods: The proposed sequence description contains a sequence module hierarchy for loop and group logic, which is enhanced by a novel strategy for performing efficient parameter and pulse shape calculation. These calculations are powered by a flow graph structure. By using the flow graph, all calculations are performed with no redundancy and without requiring preprocessing. The generation of this interpretable structure is a separate step that combines MRI techniques while actively considering their context. The driver interface is slim and highly flexible through scripting support. The sequences do not require any vendor‐specific compiling or processing step. A vendor‐independent frontend for sequence configuration can be used. Tests that ensure physical feasibility of the sequence are integrated into the calculation logic. Results: The framework was used to define a set of standard sequences. Resulting images were compared to respective images acquired with sequences provided by the device manufacturer. Images were acquired using a standard commercial MRI system. Conclusions: The approach produces configurable, vendor‐independent sequences, whose configurability enables rapid prototyping. The transparent data structure simplifies the process of sharing reproducible sequences, modules, and techniques

    Centroid Velocity Statistics of Molecular Clouds

    Full text link
    We compute structure functions and Fourier spectra of 2D centroid velocity (CV) maps in order to study the gas dynamics of typical molecular clouds (MCs) in numerical simulations. We account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas and use a 3D radiative transfer tool to model the CO line emission in a post-processing step. We perform simulations using three different initial mean number densities of n_0 = 30, 100 and 300 cm^{-3} to span a range of typical values for dense gas clouds in the solar neighbourhood. We compute slopes of the centroid velocity increment structure functions (CVISF) and of Fourier spectra for different chemical components: the total density, H2 number density, 12CO number density as well as the integrated intensity of 12CO (J=1-0) and 13CO (J=1-0). We show that optical depth effects can significantly affect the slopes derived for the CVISF, which also leads to different scaling properties for the Fourier spectra. The slopes of CVISF and Fourier spectra for H2 are significantly steeper than those for the different CO tracers, independent of the density and the numerical resolution. This is due to the larger space-filling factor of H2 as it is better able to self-shield in diffuse regions, leading to a larger fractal co-dimension compared to CO.Comment: 12 pages, 6 figures, submitted to MNRA

    Repeatability and reproducibility of cerebral 23Na imaging in healthy subjects

    Get PDF
    Abstract Background Initial reports of 23Na magnetic resonance imaging (MRI) date back to the 1970s. However, methodological challenges of the technique hampered its widespread adoption for many years. Recent technical developments have overcome some of these limitations and have led to more optimal conditions for 23Na-MR imaging. In order to serve as a reliable tool for the assessment of clinical stroke or brain tumor patients, we investigated the repeatability and reproducibility of cerebral sodium (23Na) imaging in healthy subjects. Methods In this prospective, IRB approved study 12 consecutive healthy volunteers (8 female, age 31 ± 8.3) underwent three cerebral 23Na-MRI examinations at 3.0 T (TimTrio, Siemens Healthineers) distributed between two separate visits with an 8 day interval. For each scan a T1w MP-RAGE sequence for anatomical referencing and a 3D-density-adapted, radial GRE-sequence for 23Na-imaging were acquired using a dual-tuned (23Na/1H) head-coil. On 1 day, these scans were repeated consecutively; on the other day, the scans were performed once. 23Na-sequences were reconstructed according to the MP-RAGE sequence, allowing direct cross-referencing of ROIs. Circular ROIs were placed in predetermined anatomic regions: gray and white matter (GM, WM), head of the caudate nucleus (HCN), pons, and cerebellum. External 23Na-reference phantoms were used to calculate the tissue sodium content. Results Excellent correlation was found between repeated measurements on the same day (r2 = 0.94), as well as on a different day (r2 = 0.86). No significant differences were found based on laterality other than in the HCN (63.1 vs. 58.7 mmol/kg WW on the right (p = 0.01)). Pronounced inter-individual differences were identified in all anatomic regions. Moderate to good correlation (0.310 to 0.701) was found between the readers. Conclusion Our study has shown that intra-individual 23Na-concentrations in healthy subjects do not significantly differ after repeated scans on the same day and a pre-set time interval. This confirms the repeatability and reproducibility of cerebral 23Na-imaging. However, with manual ROI placement in predetermined anatomic landmarks, fluctuations in 23Na-concentrations can be observed

    The neutron and its role in cosmology and particle physics

    Full text link
    Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between particle physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earth's gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newton's gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the "first three minutes" and later on in stellar nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic

    Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator

    No full text
    Sodium magnetic resonance imaging (Na-23 MRI) is a unique and non-invasive imaging technique which provides important information on cellular level about the tissue of the human body. Several applications for Na-23 MRI were investigated with regard to the examination of the tissue viability and functionality for example in the brain, the heart or the breast. The Na-23 MRI technique can also be integrated as a potential monitoring instrument after radio-therapy or chemotherapy. The main contribution in this work was the adaptation of Na-23 MRI for spine imaging, which can provide essential information on the integrity of the intervertebral disks with respect to the early detection of disk degeneration. In this work, a transmit-only receive-only dual resonator system was designed and developed to cover the whole human spine using Na-23 MRI and increase the receive sensitivity. The resonator system consisted of an already presented Na-23 whole-body resonator and a newly developed 5-channel receive-only phased-array. The resonator system was first validated using bench top and phantom measurements. A threefold SNR improvement at the depth of the spine (similar to 7 cm) over the whole-body resonator was achieved using the spine array. Na-23 MR measurements of the human spine using the transmit-only receive-only resonator system were performed on a healthy volunteer within an acquisition time of 10 minutes. A density adapted 3D radial sequence was chosen with 6 mm isotropic resolution, 49 ms repetition time and a short echo time of 540 mu s. Furthermore, it was possible to quantify the tissue sodium concentration in the intervertebral discs in the lumbar region (120 ms repetition time) using this setup

    Quantitative sodium MRI of kidney

    No full text
    One of the main tasks of the human kidneys is to maintain the homeostasis of the body's fluid and electrolyte balance by filtration of the plasma and excretion of the end products. Herein, the regulation of extracellular sodium in the kidney is of particular importance. Sodium MRI (Na-23 MRI) allows for the absolute quantification of the tissue sodium concentration (TSC) and thereby provides a direct link between TSC and tissue viability. Renal Na-23 MRI can provide new insights into physiological tissue function and viability thought to differ from the information obtained by standard H-1 MRI. Sodium imaging has the potential to become an independent surrogate biomarker not only for renal imaging, but also for oncology indications. However, this technique is now on the threshold of clinical implementation. Numerous, initial pre-clinical and clinical studies have already outlined the potential of this technique; however, future studies need to be extended to larger patient groups to show the diagnostic outcome. In conclusion, Na-23 MRI is seen as a powerful technique with the option to establish a non-invasive renal biomarker for tissue viability, but is still a long way from real clinical implementation. Copyright (c) 2015 John Wiley & Sons, Ltd
    corecore