
Magn Reson Med. 2020;83:1277–1290.     | 1277wileyonlinelibrary.com/journal/mrm

Received: 28 August 2018 | Revised: 4 September 2019 | Accepted: 5 September 2019

DOI: 10.1002/mrm.28020  

F U L L  P A P E R

Portable and platform‐independent MR pulse sequence programs

Cristoffer Cordes1  |    Simon Konstandin1 |    David Porter2 |    Matthias Günther1,3

1Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
2Imaging Centre of Excellence, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
3MR‐Imaging and Spectroscopy, University of Bremen, Bremen, Germany

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, 
provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
© 2019 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine

Correspondence
Cristoffer Cordes, Fraunhofer Institute 
for Digital Medicine MEVIS, Bremen, 
Germany.
Email: cristoffer.cordes@mevis.fraunhofer.de
Twitter: @cordesio

Funding information
FhG Internal Programs, Grant/Award 
Number: Attract 142-600172

Purpose: To introduce a new sequence description format for vendor‐independent 
MR sequences that include all calculation logic portably. To introduce a new MRI 
sequence development approach which utilizes flexibly reusable modules.
Methods: The proposed sequence description contains a sequence module hierarchy 
for loop and group logic, which is enhanced by a novel strategy for performing ef-
ficient parameter and pulse shape calculation. These calculations are powered by a 
flow graph structure. By using the flow graph, all calculations are performed with no 
redundancy and without requiring preprocessing. The generation of this interpretable 
structure is a separate step that combines MRI techniques while actively considering 
their context. The driver interface is slim and highly flexible through scripting sup-
port. The sequences do not require any vendor‐specific compiling or processing step. 
A vendor‐independent frontend for sequence configuration can be used. Tests that 
ensure physical feasibility of the sequence are integrated into the calculation logic.
Results: The framework was used to define a set of standard sequences. Resulting 
images were compared to respective images acquired with sequences provided by 
the device manufacturer. Images were acquired using a standard commercial MRI 
system.
Conclusions: The approach produces configurable, vendor‐independent sequences, 
whose configurability enables rapid prototyping. The transparent data structure sim-
plifies the process of sharing reproducible sequences, modules, and techniques.

K E Y W O R D S
high performance computing, modular MR sequence development, platform‐independent pulse sequence 
programming, portable, reproducible, vendor‐independent MRI

1 |  INTRODUCTION

Modern MRI sequences require sophisticated calculations to 
drive the MR hardware. These calculations can be very com-
plex for techniques that exploit advanced physical models 

and vary a lot from one acquisition strategy to another. Many 
sequence patterns can be combined with each other, which 
is an active research topic and often done to find the best 
compromise between image quality, contrast, and acquisition 
time in various circumstances.

www.wileyonlinelibrary.com/journal/mrm
mailto:
http://orcid.org/0000-0001-6389-4572
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cristoffer.cordes@mevis.fraunhofer.de
https://twitter.com/@cordesio


1278 |   CORDES Et al.

The development of MR sequences by an independent 
research group is often performed within a vendor‐specific 
framework with a restricted selection of sequence patterns 
that can be utilized. A large portion of the sequence devel-
opment work is to adapt a new technique to the specific  
environment’s needs while patching side effects that the new 
technique has on all other used techniques. Adding a new 
feature to a fundamental technique which is used in many 
sequences generally requires a lot of effort.

Previous attempts at bringing reproducibility and vendor‐
independence to the task of MRI sequence development1,2 
have been useful for early‐prototype studies. These tools are 
great solutions for creating prototype sequences and allow 
for an easy exchange and reusal of pulse modules. However, 
these tools have not provided the flexibility that is required 
for wider application in clinical research. In clinical practice, 
detailed parameter calculations need to be performed while 
the patient is being examined because the sequences depend 
on session‐specific properties, such as changing field of view 
and imaging resolution. These previous approaches involve 
performing most sequence configuration, such as loop logic 
or pulse shape calculation, as a separate step prior to transfer-
ring the sequence onto the scanner devices. Once transferred 
to the scanner, it cannot be changed. All pulse shapes and 
loop counters are fixed. Our goal is to produce sequences that 
can be used and configured on the scanner with no additional 
hardware, effectively identical to standard product sequences 
from the scanner operator’s point of view. This also includes 
the ability to change measurement protocol settings, such as 
resolution, slice positioning, field of view, repetition time, 
echo time, optional background, or fat saturation.

We developed a data structure that describes sequences in 
a self‐contained and thereby portable manner. This sequence 
definition data structure has to be simple and easy to interface 
with, so that multiple commercial scanners can be supported 
with minimal integration effort.

Our second goal is to find a new way of designing and 
combining sequence parts. Some existing tools3,4 require 
writing sequence code directly in C++ with a clearly defined 
and limited idea of what a reusable module might be. The 
programming paradigm is usually strictly object oriented, 
which rarely harmonizes with the thought process of an MRI 
sequence developer. It is more natural to express sequence 
modules and their interactions in terms of relationships and 
rules rather than assigning properties to modules in a spe-
cific order until all hardware events are fully parameterized. 
The latter requires the sequence developer to actively think 
about which parts of a sequence need to be calculated before 
other parts of other techniques that rely on it. The sequence 
developer therefore has to work on various implementation 
details of multiple logical parts of the sequence simulta-
neously. This often leads to sequence modules that have to 
be adapted or modified every time they are reused, which 

is poorly maintainable. Alternatively, this problem leads to 
modules with high number of responsibilities, which dis-
courages reusability. The proposed approach solves this issue 
by employing a sequence definition strategy that is closer to 
the intrinsic rule and dependency‐based thought process in 
MRI sequence development, completely removing the need 
to specify an order in which the sequence calculations have 
to be performed.

Some approaches3-5 simplify the design process by em-
ploying a tree structure and more flexible parameter connec-
tivity possibilities. However, the developer has to interact 
with these structures directly, which becomes confusing when 
many techniques are combined. This means that maintain-
ability does not scale well as sequence complexity increases. 
The proposed way of defining sequences does not rely on the 
sequence developer interacting with these data structures di-
rectly. Instead, the sequence developer may specify rules and 
dependencies that the framework then translates to sequence 
module connections and calculation procedures.

The presented framework consists of a sequence defini-
tion data structure that can be supported by commercial scan-
ners, and a sequence assembly process that encourages the 
development of flexible, reusable modules.

2 |  METHODS

The methods presented in this paper solve multiple problems 
within the general topic of MRI sequences and their devel-
opment. Modern sequences are complex and specialized, yet 
similar in many details. A sequence is comprised of many 
methods that may also be used by other sequences. Thus, the 
design process needs to be flexible, extensible, and amenable 
to reusable module generation. Moreover, the driver logic for 
the proposed sequences must be simple and easily maintain-
able to enable implementation on as many devices as possi-
ble. Therefore, as the connecting link, the sequence definition 
data structure that the driver uses to derive hardware events 
needs to provide a very simple interface for the driver while 
not diminishing the capability of realizing all concepts of 
modern MRI. Despite the goal of vendor independence, it is 
also important that the sequences are well‐integrated into the 
standard workflow of the respective MRI scanner. It is there-
fore necessary that the sequence definition data structure has 
to be intrinsically adaptable to protocol changes and avail-
able hardware features.

An overview of the methods proposed in this work is 
given in Figure 1.

The first part elaborates the module definition approach. 
The second part of this section explains the sequence defini-
tion data structure that is transfered to the scanner. Finally, 
some implementation details of the hardware driver are 
provided.



   | 1279CORDES Et al.

2.1 | Sequence design process
Many sequence development frameworks require writing di-
rect C++ code3 or attempt to ease the process by requiring 
the developer to interact with a sequence tree.3-5 The pro-
posed sequence definition data structure is flexibly generated 
based on an extensible set of definition rules.

Tree structures and parameter connectivity graphs are not 
an elegant choice for direct interaction with the goal making 
a modification because it is difficult to keep an overview of 
them. The novelty of the approach used in the presented work 
is that complicated relationships do not have to be defined by 
the developer directly. Instead, the sequence definition data 

structure is generated programmatically as the result of reus-
able modules and physics‐based rules that are defined by the 
sequence developer. Such definitions and rules are bundled in 
module descriptions that are called blueprints. The following 
paragraphs show some of the functionality that these blueprints 
may define. This assembly is performed in a high‐level pro-
grammatic environment which is open for extensions. An over-
view of the sequence assembly process is given in Figure 2.

A blueprint is a set of definitions and rules which can be 
stored and referenced by other blueprints. Each blueprint rep-
resents a MR sequence technique or an isolated part of it. 
Blueprints are the MR sequence modules or building blocks 
of this work.

F I G U R E  1  An overview of the 
main methods, data structures and 
interactions described in this paper. The 
sequence developer defines modules, 
called blueprints, in an intuitive high‐level 
language. The sequence modules are used 
to programmatically generate the sequence 
definition data structure. This data structure 
describes the sequence in a self‐contained 
and efficiently evaluable way. It provides 
feedback to the sequence developer to 
interactively aid the sequence design and 
development process. The data structure 
is portable and vendor‐independent. Once 
the data structure is transfered to the MRI 
device, the scanner operator chooses 
protocol settings for the measurement and 
receives feedback, such as valid protocol 
parameter ranges and sequence run time. 
After preparation, the data structure can 
be evaluated to generate a stream of 
event instructions which is translated to 
vendor‐specific hardware events. While the 
sequence is running, parameters that impact 
pulse shapes and timing change. This could 
be loop counters in the simplest case, but 
external parameters updates, such as patient 
position information or breathing state are 
also supported



1280 |   CORDES Et al.

The core of the assembly process is a processing queue 
of definitions that is filled recursively, starting with the defi-
nition of the sequence’s main blueprint. Definitions that are 
instantiated and added to the queue are called definition jobs. 
The sequence element hierarchy and the parameter graph are 
byproducts of the assembly process. Definition jobs can be 
postponed or updated based on properties and changes in 
the sequence element hierarchy, the parameter graph or the 
set of already processed definition jobs. This updating mech-
anism adds flexibility to the assembly process. For example, 
the default flip angle of an RF pulse is set or removed auto-
matically, whenever a different flip angle is removed or set. 
As another example, the connections of a parameter in the 
parameter graph can be updated whenever a gradient or RF 
pulse is added or removed from a part of the sequence ele-
ment hierarchy. Details about definition types are found in 
the next paragraphs, in the help section of the software,6 and 
in the Supporting Information.

2.2 | Sequence element definition
The proposed approach utilizes a tree structure to represent 
the hierarchical properties of MR sequences. Nodes of that 
tree are called sequence elements within this work. A blue-
print can hold the instruction to attach a sequence element to 
another one. This attached sequence element can be associ-
ated with another blueprint, effectively defining a sequence 
subtree recursively. For instance, a combination of two trap-
ezoidal gradient pulse sequence element definitions and an RF 
pulse sequence element definition can form a refocused slice‐ 
selective excitation blueprint. This blueprint is then used it-
self as a sequence element definition and combined with a 
phase encoding and readout to yield a line readout blueprint. 
Sequence elements can be defined over multiple hierarchical 
levels, making it possible to inject functionality, such as a spe-
cific RF pulse, into different module that further configures 
itself based on that injected module. In practice, this allows the 

F I G U R E  2  An overview of the sequence assembly process. The library contains blueprints, symbolized by the book icons. Each blueprint 
contains multiple definitions, symbolized by the angle brackets icon. The process is initialized with a sequence element definition job referencing 
a blueprint within the sequence library. Jobs are symbolized by the stars icon next to the angle brackets icon. Jobs are processed according to 
type‐specific code. More details about the type‐specific code can be found in the Supporting Information or in the help section of the sequence 
development software.6 During processing, a job may imply further jobs which are then added to a queue to be processed later. Jobs of type 
sequence element and parameter generate parts of the sequence definition data structure as byproducts. The combination of sequence element 
hierarchy and parameter graph is the sequence definition data structure. Examples of sequences can be found in the sequence development 
software6



   | 1281CORDES Et al.

definition of blueprints that specify the overall structure of a 
sequence, containing all loop logic and timing between excita-
tion, preparation and acquisition, while other modules specify 
the behavior of single sequence elements in an isolated manner. 
The hierarchy needs to be fully resolved prior to transferring 
the sequence to the scanner, which is done programmatically 
based on the blueprints that relate to a given sequence.

2.3 | Parameter dependency definitions
Sequence elements can possess properties or parameters, such 
as a start time or pulse amplitude. Blueprints can contain pa-
rameter definitions that specify a calculation instruction for 
a variable and its required input paths. It is not required to 
define parameters in a specific order. For instance, the start 
time of a pulse may be defined through the duration of an-
other pulse, but the amplitude of the latter pulse might be 
determined by the amplitude of the prior pulse. None of the 
two pulses can be calculated without partial calculation of the 
other one. Since the sequence assembly step is separate from 
the definition process, this is not a problem in the presented 
platform. Circular definitions are identified at the time of se-
quence assembly, during the sequence development process.

2.4 | Simple algebraic equations
Some physical properties are related through simple alge-
braic relations. For example, bandwidth, duration and time‐
bandwidth‐product of an RF pulse or ramp durations, plateau 
duration, and full pulse duration of a trapezoidal gradient 
pulse. During the sequence assembly process, once sufficient 
variables of the equation are resolved, the equation can be 
used to find an explicit formulation of the unknowns and also 
append them to the graph. Most notably, any two of the com-
mon timing parameters, start time, end time, duration, and 
center time, may be defined to have all of them available for 
further definitions. This allows the sequence developer to de-
fine a technique that is flexibly reusable, since the parameter 
calculation graph is resolved in different ways depending on 
its context. Non‐existence or contradiction of such defini-
tions are identified at the time of sequence assembly, during 
the sequence development process.

2.5 | Contextual parameter definitions
Some physical properties are best derived by using informa-
tion about all sequence elements that are present in the se-
quence element (sub)tree. For example, to calculate the time 
of a spin echo or gradient echo, all pulses of a corresponding 
time interval have to be considered. This feature is realized 
programmatically by collecting all sequence elements of a 
certain type, e.g. gradient pulses, to then compose a formula 
based on their defining parameters.

2.6 | Tests
A parameter value assertion can be declared as a test and is 
then added to a test suite during the sequence assembly pro-
cess. Such an assertion could be non‐negativity of a pulse du-
ration or conformity with hardware restrictions. Finally, all 
tests are combined into one parameter that asserts, that the 
sequence is parameterized properly. This test suite can then 
be evaluated by the scanner operator on the scanner console, 
either directly or indirectly while setting the measurement 
protocol. Thus, the sequence developer can decide which con-
ditions have to be met in order for a module to function prop-
erly. Improper settings are aggregated and presented during 
the development process and prior to executing the sequence.

2.7 | Further rules and definitions
The assembly process produces the portable and self‐ 
contained sequence definition data structure which is explained  
in the next section. The blueprint concepts are open for  
extension. As long as that end‐product of the assembly step 
does not need adaptation, the hardware drivers do not need 
to be modified, even when further complex definition logic 
is introduced.

2.8 | User interaction
The task of a sequence developer within the proposed 
framework is to produce desired MRI sequence function-
ality, represented as JSON objects that fully define suit-
able behavior. The user is given the option to either write 
and edit the JSON object directly, or to use graphical aids 
to generate the objects interactively. When working on an 
MRI sequence, information about the current state of the 
sequence is presented to the user to ease the development 
process. In case of a parameter dependency definition, this 
would be contextual information about parameters that 
are potential candidates as inputs, and a live evaluation of  
the calculation instruction based on the current state of the 
parameter graph. Demos are presented in the help section 
of the software.6

2.9 | Sequence definition data structure
This section explains how the rules and definitions of the 
previous sections can be used to create a self‐contained and 
portable, vendor‐independent description of the sequence 
that can be configured and run at the scanner. A JSON 
schema that defines the data structure can be found in the 
Supporting Information.

It is common practice to express pulse sequence elements 
in a tree structure.3-5 This is a natural approach for two reasons: 
Simple elements are often combined to form more complex 



1282 |   CORDES Et al.

ones, and evaluation loop structures are nested and act only on 
partial sequence element groups. The proposed approach also 
uses such a structure. The novel addition is, that all calcula-
tions that are relevant to the sequence are not orchestrated by 
this data structure or coupled to it, but rather realized through 
a flow graph structure. A further difference with previous 
approaches is that leaves of the tree structure are not sorted 
chronologically, which impacts the algorithm required to run 
the sequence. This will be explained in a later section.

2.10 | Sequence element hierarchy
The sequence element hierarchy (see Figure 3) is a tree struc-
ture in which each node represents a sequence element. The 
driver uses the sequence element hierarchy and the special 
properties of the nodes to derive which hardware events have 
to be dispatched in which order. All calculations including 
timing and pulse shapes are then performed in the parameter 
graph which will be elaborated in the next section.

2.10.1 | Basic sequence element
Ultimately, the driver needs to dispatch hardware events. 
Basic sequence elements correspond to one hardware event 

each. In most common cases and throughout the examples 
in this paper, there are only three types of basic sequence 
elements: Gradient pulses, RF pulses, and ADC events. 
However, the concept is open for extension. The three basic 
types only differ in their set of defining parameters, and fur-
ther basic types can be added, such as elastography hardware 
events, table movement, or triggers. However, the vendor‐
specific driver has to be extended to support new basic types.

2.10.2 | Loop sequence element
A loop sequence element within the sequence element hierar-
chy implies that all subordinated sequence elements are to be 
repeated a given number of times, which can be determined 
by evaluating the parameter graph node that is associated 
with that loop sequence element’s number of iterations. The 
parameter graph will be explained in the next section. For 
each iteration of the subordinated basic sequence elements, 
the parameter of the parameter graph that is associated with 
the counter of that loop sequence element node needs to be 
set to the appropriate value.

Reordering concepts, such as centric reordering, are real-
ized as part of the parameter graph. Within that graph, a func-
tion or array that maps indices appropriately is implemented 

F I G U R E  3  Sequence element hierarchy of an abstract sequence. Each node represents one sequence element. A basic sequence element 
corresponds to a hardware event, such as a gradient pulse. A loop sequence element implies a repetition of its subtree. The most straightforward 
way to run a sequence is to traverse the hierarchy depth‐first and iterate at loop nodes while keeping track of the current loop counter values. For 
every basic sequence element that is visited, a corresponding event has to be dispatched. For that event, the loop nodes of the parameter graph (see 
Figure 4) need to be set correspondingly before calculation. An exemplary FLASH sequence element hierarchy is illustrated in Figure 6. All other 
sequence elements, such as the measurement protocol container node, do not affect the sequence tree traversal process



   | 1283CORDES Et al.

between the loop counter and the input parameters of the 
acquisition module. This way, reorderings can be exchanged 
easily.

2.10.3 | All other sequence elements
All other sequence elements are of no algorithmic relevance. 
They may be used as containers for system or protocol param-
eters corresponding with a convention to ease the develop-
ment process, or as a group to ease the development process. 
Properties of these sequence elements can be connected to 
other sequence elements through the parameter graph that is 
explained in the next section.

2.11 | Parameter calculation graph
The portable sequence definition data structure contains a 
set of parameters. The parameters are arranged in an acyclic,  
directed calculation flow graph (see Figure 4). Each node 
has calculation instructions attached to it that may only use 
parameter values of the incoming edges. The calculation 
instructions can be of arbitrary type and the parameter val-
ues may consist of high‐level data structures, such as pulse 
shapes. Within this work, this logic is implemented using the 
Lua scripting language.7

The acyclic nature of the parameter graph needs to be 
ensured during the module definition steps. Cycles and pa-
rameter nodes with missing inputs can be identified by recur-
sively tracing the inputs of any parameter of the graph, which 
happens at their first calculation attempt. All parameters that 

are part of a cycle and parameters that cannot be calculated 
due to missing inputs are then communicated to the sequence 
developer during the module definition steps.

The whole parameter graph is guaranteed to yield consis-
tent results, as long as each parameter calculation node yields 
a deterministic result based on its inputs, and as long as a 
valid calculation order is pursued. There are multiple possi-
ble calculation orders, which can be exploited to avoid calcu-
lations that are not needed for for specific tasks that do not 
require all parameters to be calculated. Choosing a specific 
calculation order may be beneficial during unit tests or binary 
search of valid protocol parameter ranges.

2.11.1 | Efficient calculation
For calculation efficiency, a parameter value cache is em-
ployed. Whenever a parameter is requested, its value is re-
trieved from the cache if it is valid, or calculated otherwise. 
The calculation of a parameter node recursively requests val-
ues from its input nodes, which ensures that only calculations 
that are essential for the currently requested parameter are 
performed. It suffices to only cache one value per parameter 
node. This means that the required memory for the calcula-
tion cache is independent of loop structure and the number of 
overall loop iterations.

2.11.2 | Efficient updating
Certain parameter node values, such as loop counters and pro-
tocol settings, need to change before or during the execution 

F I G U R E  4  An illustration of a part of the calculation graph. Bounding boxes represent sequence elements. Contained parameters are 
associated with that sequence element. Gradient pulses are assumed to be rectangular with amplitude A, duration dt, and start time t0. The ADC is 
simplified to only require start time and duration. Parameters can depend on each other, beyond sequence element, or module boundaries. Certain 
calculations are unaffected by the loop counter change and can thus be cached and only need to be calculated once. The parameter graph of a 
complete and realistic sequence is illustrated in Figure 6



1284 |   CORDES Et al.

of the sequence. All of the parameter graph’s values are de-
terministic when all of its nodes contain deterministic cal-
culation routines. When a change in such a parameter value 
is instructed, it suffices to clear or update the cache recur-
sively for all dependent parameter nodes. This means that no 
computation is performed at the time of parameter change. 
Calculations only occur when a parameter is requested.

The logic of using the observer pattern for parameter or 
attribute calculation has been introduced previously.5 The ap-
proach presented here enhances this idea by only performing 
calculations when they are requested, rather than updating all 
dependent parameters each time a change has occurred. The 
benefits of this variation are explained in the discussion.

2.12 | Evaluating the sequence definition 
data structure
The sequence definition data structure can be used to directly 
calculate sequence properties such as run time through the 
parameter graph and thereby provide feedback while the 
scanner operator determines the acquisition‐specific settings. 
Afterward, the sequence definition data structure generates 
the corresponding stream of hardware events.

The following paragraphs explain how the stream of 
events is calculated for a sequence that does not foresee ex-
ternal feedback during its runtime. External feedback that 
merely influences pulse shapes does not affect the validity of 
this approach, but external feedback that changes the timing 
of the pulses requires a slightly modified approach which will 
be explained in the discussion section of this work.

Running a sequence, i.e. to generate the stream of hard-
ware events, involves two steps. In the first step, the sequence 
element hierarchy is analyzed to identify how often and with 
which loop counter value states the basic sequence elements 
have to be evaluated. The second step then applies the loop 
counter value changes to the parameter graph and then retrieves 
the defining parameters of the basic sequence elements. The 
retrieved parameters values completely specify basic sequence 
elements which are then used by the scanner driver to dispatch 
corresponding hardware events.

2.12.1 | Extracting counter values and basic 
sequence element iterations
The tree structure of the proposed approach is not required 
to contain temporal information. Pulses of different subtrees 
can be interwoven temporally. Consequently, all start times 
of all hardware events generally have to be calculated during 
the first step. To remove the need to calculate the timing of 
every single pulse beforehand, the sequence developer can 
set subtrees to be atomic, meaning that it may only overlap 
partially with its directly neighboring atomics. For example, 
an atomic could either be a pulse of basic sequence element, a 

preparation procedure, or a full iteration of a line acquisition. 
The timing of MR events within each atomic may change 
from loop counter to loop counter.

After all atomics are determined, their start times are cal-
culated. Atomics that are subordinated to a loop are registered 
multiple times with their respective set of loop counters. Start 
time parameters are calculated through the parameter graph 
structure and as such processed with no unnecessary overhead 
and redundancy. Using this traversal approach, it is not guar-
anteed that all atomics are registered in chronological order. 
Therefore, they need to be sorted before the next step to pro-
vide a chronological hardware event stream. The number of 
atomic executions is usually of the same order as the number 
of acquisition lines. As such, the sorting does not introduce 
significant computational overhead. Since pulses and timing 
within an atomic are calculated during run‐time, overlap viola-
tions may occur unless test routines are implemented as part of 
the parameter graph in a prior step. An alternative evaluation 
strategy that circumvents this issue is explained in the discus-
sion section. All steps are performed on the scanner hardware.

Besides loop length and atomic start time parameters, no 
calculations are performed in this step. In particular, no pulse 
shapes are calculated at this time. Note that loop lengths and 
atomic start times can depend on loop counters. The process-
ing of these calculation is performed through the parameter 
graph, equivalent to the calculations of pulse shapes or other 
parameters.

2.12.2 | Running atomic executions
The result of the first step is an ordered list of start times for 
atomic sequence element hierarchy subtrees together with their 
associated loop counter values. The memory requirements of 
this is roughly of the same order as the header information of 
all ADC events within the sequence. The second step calculates 
the corresponding hardware events in chronological order.

To calculate the hardware event descriptions of an atomic 
execution’s basic sequence elements, the parameter graph 
needs to be set to the appropriate state by setting loop counter 
variables in the parameter graph. Afterward, all defining 
parameters of the atomic’s subordinated basic sequence ele-
ments can be retrieved through the parameter graph.

Since intermediate results of the calculations are cached, 
only the differences between the parameter calculation graph 
states are calculated.

These basic sequence element parameterizations ideally 
describe the hardware events directly. They are then passed 
on to the sequence driver to perform the vendor‐dependent 
interfacing steps. Gradient shapes are stored as time‐ampli-
tude pairs in the base data structures, assuming linear inter-
polation between the points. There is no distinction between 
trapezoidal and non‐trapezoidal pulses in the base data struc-
tures. The vendor‐dependent interface can either process 



   | 1285CORDES Et al.

gradient pulses with shapes containing four or less points in 
a specialized manner, or merge pulses that are contained in a 
given time span, depending on hardware restrictions and per-
formance. RF pulse shapes are generally cached and mirrored 
in the vendor‐specific interface.

2.13 | Implementation
The sequence evaluation logic is implemented in Lua.7 Lua is a 
lightweight and high‐performance scripting language that was 
designed to be embedded into C/C++ code flexibly with mini-
mal requirements. The sequence definition data structure can be 
transferred directly onto the scanner without a compilation or 
hardware‐specific preparation step. The vendor‐specific driver 
implementation sets and gets hardware properties, sequence 
properties, and measurement protocol parameters. All evalua-
tion logic beyond this is part of the vendor‐independent Lua 
codebase. Lua can be extended with C/C++ code easily, but 
this was not necessary throughout this work, since we have not 
run into performance issues or limitations of Lua.

After the sequence is fully prepared, the driver requests 
atomic executions sequentially through a pulse event stream. 
The atomic execution structures can either be split according 
to the basic sequence elements, or provided as one pulse per 
channel chunks (RF, physical gradient directions), as time‐
value pairs, that are scaled in time and amplitude to match 
the driver requirements. It also contains further information 
that is directly required to configure the hardware events such 
as the ADC measurement header and RF/ADC frequency or 
phase modulations. The ADC measurement headers are pro-
vided in the vendor‐independent ISMRMRD8 format, which 
needs to be mapped to vendor‐specific acquisition properties 
if the vendor‐specific reconstruction is to be used.

Sequences can alternatively be exported to the Pulseq 
format1 to be then run on devices for which no other dedi-
cated driver exists. However, the exported sequences cannot 
be further configured since they contain static pulse shape 
definitions.

To embed the sequence evaluation logic, it is necessary 
to provide functionality for loading the sequence file, and to 
transform a stream of basic hardware event descriptions to 
actual events, which can be done via a C/C++ API or by 
directly interfacing with Lua.

An optional GUI for modifying sequence protocol parame-
ters in addition to the vendor protocol setting interface was also 
implemented, which can be run directly on the scanner oper-
ator console. The GUI is presented in the software release.6

2.14 | Software
The sequence development software is released.6 It requires 
a backend server that performs sequence assembly and pro-
vides a communication interface to the sequence development 

frontend. The frontend that can be run on a contemporary 
browser. The frontend contains the same Lua codebase that 
is used in the MR hardware driver to calculate MR events and 
configure the measurement protocol. Assembled sequences 
can be exported in seqeunce definition data structure form, 
and alternatively as read‐only variants to be run without the 
backend server, pertaining information about blueprints and 
detailed information about the steps that were performed dur-
ing sequence assembly. It is possible to use the tool, even in 
read‐only‐mode, to export a parameterized pulse sequence to 
the Pulseq format1 and to run custom Lua scripts to interac-
tively explore the sequence and Lua core capabilities.

The source of a reference implementation for evaluating 
the sequence definition data structure is publicly available. 
The file format specification for the sequence definition data 
structure can be found in the Supporting Information. The 
source for a C++ program that interfaces with the Lua code 
of the frontend is also provided, such that custom scripts that 
are written within using the frontend can be evaluated without 
the use of a browser. The Lua interpreter is the only external 
dependency of the C++ interface. The sequence develop-
ment backend server and frontend are provided as binaries.

2.15 | Example
The techniques described above were used to implement and 
run a 2D FLASH9 sequence as an illustrative example.

The 2D FLASH sequence consists of one base loop that 
repeats the line acquisition sequence element, offset by the 
repetition time. This reduces the effort of the first step of 
the sequence running process to a mere accumulation of 
repetition times. The line acquisition has three subordinated 
sequence elements, which are set to be the atomics of the se-
quence, for excitation, phase/frequency encoding, and spoil-
ing. Sequence element hierarchy and parameter calculation 
graph are illustrated in Figures 5 and 6. Further more com-
plex examples can be found in the software.6 A simplified 
abstract example can be found in the Supporting Information.

2.16 | Sequence implementation
To assess the feasibility of the approach, various sequences 
were implemented. The result section showcases 2D FLASH,9 
EPI,10 SE‐EPI, and RARE11 sequences. During the design 
process of those sequences, blueprints were implemented to 
be flexibly reusable. For instance, the RARE sequence did 
not require the implementation of any module that directly 
relates gradient, RF, ADC, protocol, system or k‐space calcu-
lation components. It sufficed to use parts of the 2D FLASH 
and SE‐EPI sequence and connect them in an alternative loop 
and refocusing strategy. Many sequences contain GRAPPA 
functionality, which all use the same GRAPPA blueprint. The 
modules that connect device properties and common protocol 



1286 |   CORDES Et al.

settings to the rest of the sequence were also shared, such that 
no extra work was required to provide a seamless configura-
tion experience to the scanner operator. Sequences and their 
implementation details can be explored interactively in the 
software.6

2.17 | Phantom and in vivo measurements
Images were acquired using a standard commercial MRI 
system, operating at 3T (MAGNETOM Skyra, Siemens 
Healthineers, Erlangen, Germany)

Sequence protocol parameters are as follows: FLASH9: 
TR  =  100  ms, TE  =  5  ms, flip angle = 30◦, band-
width  =  500  Hz/px, fov = (256 mm)2, matrix size = 2562.  
single‐shot EPI10: TE  =  65  ms, flip angle = 90◦, band-
width = 2000 Hz/px, fov = (256 mm)2, matrix size = 1282.  
Single‐shot spin echo EPI: Identical to EPI, ex-
cept for TE  =  120  ms. RARE11 TR=4  s, TE  =  43  ms, 
flip angles = 90◦ and 180◦, bandwidth = 1000 Hz/px, lines/
shot = 8, fov = (256 mm)2, matrix size = 2562.

3 |  RESULTS

3.1 | Phantom and in vivo measurements
The framework was used to implement a set of common se-
quences. Measurements acquired with these sequences were 
then compared to their product sequence counterparts in 
Figures 7 and 8. Protocol parameters are listed in Section 2.16.

The images are visually similar. Some image artifacts are 
different, most notably in the EPI and SE‐EPI sequences. The 
images are further discussed in Section 4.1.

4 |  DISCUSSION

The presented work introduced a novel MR sequence defini-
tion data structure containing a parameter graph and sequence 
hierarchy. This data structure and its interaction concepts 
provide an easy interface to the driver. The sequences are 
still completely configurable, even after being ported onto 

F I G U R E  5  Illustration of the sequence hierarchy of a simple 2D FLASH sequence. Protocol and system sequence elements (green) are 
subordinated to the sequence root. The single loop (red) has one subordinated sequence element that represents a single FLASH line excitation, 
readout, and spoiling. These three parts are subordinated and set as the atomic sequence elements of the sequence. They each define children with 
lower level logic down to base hardware events (blue). Note that no information about the temporal order is part of the sequence hierarchy. A demo 
FLASH sequence can be explored interactively in the software6



   | 1287CORDES Et al.

the scanner, without requiring any additional hardware or ex-
ternal preprocessing steps. The strategy for all calculations is 
based on a graph structure that ensures the shortest possible 
path and thus optimal calculation efficiency. The sequences 
are generated within a high‐level programming framework 
that spares the sequence developers from interacting with the 

low‐level structures, but rather allows them to combine rules 
and define dependencies in a way that is natural to the se-
quence design process.

It is a matter of taste what an inutitive sequence defi-
nition workflow should be comprised of. Furthermore, 
sequence development tasks can differ greatly in their 

FIGURE 6 Illustration of a part of the sequence definition data structure’s parameter graph of a 2D FLASH sequence. Each node corresponds to 
one parameter which can be calculated deterministically, using parameter values of connected input parameters. The arrow direction reflects the input/
output relationship. Whenever a loop counter is changed, only a small subset of parameters need recalculation, illustrated by the right cluster box. Some 
parameters that are affected by a loop counter change, such as phase encoding gradient amplitude, do not result in a recalculation of other parameters 
of the affected sequence element, such as phase encoding gradient start time. Their calculation is triggered individually. The RF pulse shape calculation 
is highly independent of most other calculations of the sequence, illustrated by the left cluster box. If none of the affected input protocol and system 
parameters change, this calculation is never performed a second time. A demo FLASH sequence can be explored interactively in the software6

F I G U R E  7  Comparison of images acquried with sequences implemented within the proposed framework and their counterparts acquired 
with sequences provided by the manufacturer. The images were reconstructed on the manufacturer’s hardware using the manufacturer’s 
reconstruction framework. Measurement protocol parameters are listed in Section 2.16



1288 |   CORDES Et al.

underlying thought process. The design process of isolated 
excitation module is very different from that of a loop and 
reordering strategy. The presented approach offers a con-
cept of bundling such design logic in reusable modules that 
capture the essence of such thought processes. How these 
modules are created, modified, and debugged by the user in 
an intuitive way are a matter of further research. In partic-
ular, we do not propose that a sequence developer interacts 
directly with the parameter graph structure.

4.1 | Phantom and in vivo measurements
The images acquired with sequences of the proposed frame-
work are justifiable alternatives to those provided by the 
manufacturer. The images are visually similar. Objective com-
parisons with SNR measurements and joint histograms were 
omitted because mimicking product sequences was not a goal 
of this project. Differences were due to deliberate choices made 
during the implementation process. For example, the manufac-
turer version of the EPI sequence that was used employs ramp 
sampling, while the sequence developed using the proposed 
framework does not. This could however be implemented. The 
artifact differences of the EPI and SE‐EPI sequences can be ex-
plained with the employment of ramp sampling and the implied 
different echo spacing and gradient amplitudes.

4.2 | Features of the proposed approach
The following sections focus on the features that are enabled 
by the evaluation data structure. These features are impos-
sible or hard to realize without the proposed graph structure.

4.2.1 | Quick random access pulse 
calculation during development
The pulse calculations of most MRI frameworks are re-
quired or assumed to be run strictly sequentially, following 
a single, dedicated, full MRI sequence calculation routine. 
The proposed framework was designed to not have that 
restriction. When only small parts of the sequence are of 
interest during the sequence development process, such 
as the pulses during a single repetition time, then only the 
elements contained in that timespan are calculated or re-
freshed. This provides instant visual feedback when inves-
tigating the effect of a protocol parameter or a structural 
change, when plotted as a pulse sequence diagram. This is 
enabled by the fact that all calculations are deterministic 
and cached, and thus either stay valid or are efficiently up-
dated after a modification.

4.2.2 | Valid protocol parameter ranges
The range of physically feasible measurement protocols is 
often of interest and non‐trivial to determine. Protocol pa-
rameters are often defined individually and the scanner oper-
ator receives feedback in the form of valid ranges for a single 
parameter of interest.

Tests that ensure physical feasibility are added to the pa-
rameter graph. To investigate a protocol parameter value for 
feasibility, the protocol parameter can be set correspondingly, 
followed by evaluating the test parameters that then then en-
sure that the protocol parameter choice is valid. This process 
is accelerated by caching of intermediate results which is 

F I G U R E  8  Comparison of further images acquired with sequences implemented within the proposed framework and their counterparts 
acquired with sequences provided by the manufacturer. The sequences are identical to those of Figure 7, except for an added fat saturation pulse 
within the EPI and SE‐EPI sequences. Measurement protocol parameters are listed in Section 2.16



   | 1289CORDES Et al.

intrinsic to the graph approach ‐ parameters that do not de-
pend on the protocol parameter in question are only calcu-
lated once. It can be further streamlined by prioritizing tests 
that failed in a previous attempt. This ensures the shortest 
calculation path for the tests that are likely to fail.

This approach requires test results to be independent 
of parameters that change during execution, such as loop 
counters. Invalid parameters that depend on specific loop 
counter values can only be identified when the graph is set 
to a failing loop counter configuration. Iterating through all 
loop counter configurations essentially calculates all hard-
ware events and is thus computationally expensive and a 
poor choice for testing many potential candidate protocol 
settings. Performing a full test run can be triggered by the 
scanner operator or sequence developer, and a failing full 
test run that depends on specific loop counters is an indica-
tor of poor test design.

The graph approach does not provide a full solution to 
finding the complete set of feasible protocols. Arbitrary pa-
rameter calculations cannot be inverted and arbitrary param-
eters do not belong to a finite‐dimensional or convex space. 
This issue is independent of sequence implementation or 
framework. The general mathematical formulation has no 
directly applicable, simple solution. But a certain degree 
of back‐propagation for selected parameters is reasonable 
and may lead to insight about the hidden protocol parame-
ter constraints. In particular, many timing relations that are 
omnipresent in sequences correspond to systems of linear 
equations which can be analyzed confidently. This insight 
could then lead to new approaches in sequence optimization 
or machine learning.

In any case, the forward problem of parameter validity 
check is streamlined by exploiting the aforementioned prop-
erties of the graph and caching. This results in faster checks 
and feedback which may be critical in a clinical setup.

Finding a valid protocol when given an invalid protocol 
state is an essential problem of clinical routine. For this task, 
the graph structure can help automate the process by reducing 
the set of parameters that need to be considered for a change 
to those that cause the breaking tests. The sequence developer 
can add protocol resolution logic as vendor‐independent core 
logic to the Lua code base.

4.2.3 | Parameter updates during 
sequence execution
The parameter calculation graph can receive additional feed-
back or modification instructions during runtime, such as 
slice settings generated by a tracking system. Any part of the 
graph, including all pulse shape calculations, may depend on 
those additional changing parameters.

If the externally updated parameter does not influ-
ence start time parameters of atomic sequence elements or 

hardware events, then the change is directly supported by the 
approach explained above, without the need for any modi-
fication to the sequence definition data structure evaluation 
algorithms. The parameter update recursively invalidates or 
updates the cache of all dependent parameters. Upon the next 
parameter retrieval request, the non‐cached parameter values 
will be calculated based on the new state of the parameter 
calculation graph.

If the externally updated parameter influences a start time 
parameter of an atomic sequence element or hardware event, 
or a loop length parameter, then it must be considered that 
order and number of all hardware events is not known at the 
time the measurement is started. This challenge can be miti-
gated by adding a sequence element hierarchy traversal order 
to the sequence definition data structure. This additional 
order removes the need to calculate all start times as an initial 
step after the measurement is started, at the cost of increased 
development effort.

With the addition of this feature, the need to keep a list 
of all atomic execution start times and corresponding loop 
counters in memory, which has a size of the order of all 
image acquisition lines, would vanish.

5 |  CONCLUSION

The sequence definition data structure has a clear protocol 
parameter structure and hardware event stream interface, 
and thus hardware‐specific driver implementations can be 
slim, and roughly require the same steps to implement and 
support as related vendor‐independent pulse sequence de-
scription approaches.1,2 This does not diminish its flexibility 
because all sequence logic is resolved as part of the param-
eter calculation flow graph, and many remaining features can 
be implemented in Lua without requiring compilation. The 
resulting sequences have an efficient logic for handling pro-
tocol changes by the scanner operator by only performing af-
fected calculations in their most efficient way. Informational 
feedback, such as run time, and sequence unit test results are 
provided to the scanner operator.

Any device with a compatible driver can evaluate the se-
quence, even if the development process changes. Other open 
pulse sequence design tools require writing raw C++ code,3,4 
interacting with complex evaluation structure,4,5 or leave the 
process of writing the sequence evaluation structure to the 
developer altogether.1,2 The proposed framework allows MRI 
techniques to be specified on a higher level, such that the 
sequence developer can directly define relations of physical 
models, instead of having to specify hardware events, step by 
step, from protocol parameter to pulse shape. The evaluation 
structure contains no raw pulse shapes and thus scales well 
with sequence complexity since its memory and calculation 
footprint scale well, as illustrated by the demo tool.



1290 |   CORDES Et al.

The proposed approach is a step toward reproducible 
sequence descriptions that may enhance comparability of 
MRI measurements in the context of multi‐center clinical 
studies.

ACKNOWLEDGMENTS

The authors would like to thank Saulius Archipovas for con-
sultancy and fruitful discussions.

ORCID

Cristoffer Cordes   http://orcid.org/0000-0001-6389-4572 

REFERENCES

 1. Layton KJ, Kroboth S, Jia F, et al. Pulseq: a rapid and hardware‐
independent pulse sequence prototyping framework. Magn Reson 
Med. 2017;77:1544–1552.

 2. Nielsen JF, Noll DC. TOPPE: a framework for rapid prototyping of 
MR pulse sequences. Magn Reson Med. 2018;79:3128–3134.

 3. Jochimsen TH, von Mengershausen M. ODIN‐object‐oriented de-
velopment interface for NMR. J Magn Reson. 2004;170:67–78.

 4. Magland JF, Li C, Langham MC, Wehrli FW. Pulse sequence pro-
gramming in a dynamic visual environment: sequenceTree. Magn 
Reson Med. 2016;75:257–265.

 5. Stöcker T, Vahedipour K, Pflugfelder D, Shah NJ. High‐ 
performance computing MRI simulations. Magn Reson Med. 2010; 
64:186–193.

 6. Cordes C. gammaSTAR—http://gamma-star.mevis.fraun hofer.
de—https ://ipfs.io/ipns/QmQYB inMaY bMFsS Q2Twr YEvKk 
5BBna n1Esj VcUdD nupYBW, 2019.

 7. Ierusalimschy R, de Figueiredo LH, Filho WC. Lua—An exten-
sible extension language. Software: Practice Experience. 1996; 
26:635–652.

 8. Inati SJ, Naegele JD, Zwart NR, et al. ISMRM Raw data format: 
a proposed standard for MRI raw datasets. Magn Reson Med. 
2017;77:411–421.

 9. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K‐D. FLASH 
imaging. Rapid NMR imaging using low flip‐angle pulses. J Magn 
Reson (1969). 1986;67:258–266.

 10. Mansfield P. Multi‐planar image formation using NMR spin 
echoes. J Phys C. 1977;10:L55–L58.

 11. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging 
method for clinical MR. Magn Reson Med. 1986;3:823–833.

SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section. 

How to cite this article: Cordes C, Konstandin S,  
Porter D,  Günther M. Portable and platform‐
independent MR pulse sequence programs.  
Magn Reson Med. 2020;83:1277–1290.  
https ://doi.org/10.1002/mrm.28020 

http://orcid.org/0000-0001-6389-4572
http://orcid.org/0000-0001-6389-4572
http://gamma-star.mevis.fraunhofer.de
http://gamma-star.mevis.fraunhofer.de
https://ipfs.io/ipns/QmQYBinMaYbMFsSQ2TwrYEvKk5BBnan1EsjVcUdDnupYBW
https://ipfs.io/ipns/QmQYBinMaYbMFsSQ2TwrYEvKk5BBnan1EsjVcUdDnupYBW
https://doi.org/10.1002/mrm.28020

