3,959 research outputs found
Radar Derived Spatial Statistics of Summer Rain
Data reduction and analysis procedures are discussed along with the physical and statistical descriptors used. The statistical modeling techniques are outlined and examples of the derived statistical characterization of rain cells in terms of the several physical descriptors are presented. Recommendations concerning analyses which can be pursued using the data base collected during the experiment are included
Harmonic generation in nonlinear beam-plasma systems
Harmonic generation and components of nonlinear cylindrical beam plasma devices including RF energy couplin
Maximum likelihood estimation of photon number distribution from homodyne statistics
We present a method for reconstructing the photon number distribution from
the homodyne statistics based on maximization of the likelihood function
derived from the exact statistical description of a homodyne experiment. This
method incorporates in a natural way the physical constraints on the
reconstructed quantities, and the compensation for the nonunit detection
efficiency.Comment: 3 pages REVTeX. Final version, to appear in Phys. Rev. A as a Brief
Repor
Determination of the Weak Axial Vector Coupling from a Measurement of the Beta-Asymmetry Parameter A in Neutron Beta Decay
We report on a new measurement of the neutron beta-asymmetry parameter
with the instrument \perkeo. Main advancements are the high neutron
polarization of from a novel arrangement of super mirror
polarizers and reduced background from improvements in beam line and shielding.
Leading corrections were thus reduced by a factor of 4, pushing them below the
level of statistical error and resulting in a significant reduction of
systematic uncertainty compared to our previous experiments. From the result
, we derive the ratio of the axial-vector to the vector
coupling constant Comment: 5 pages, 4 figure
From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model
Using results from the theory of non-degenerate conducting polymers like
cis-polyacetylene, we generalize our previous work on dense baryonic matter and
the soliton crystal in the massless Gross-Neveu model to finite bare fermion
mass. In the large N limit, the exact crystal ground state can be constructed
analytically, in close analogy to the bipolaron lattice in polymers. These
findings are contrasted to the standard scenario with homogeneous phases only
and a first order phase transition at a critical chemical potential.Comment: 12 pages, 7 figures, revtex; v2: improved readability, following
advice of PRD referee; accepted for publicatio
Measurement of complex fragments and clues to the entropy production from 42-137-MeV/nucleon Ar + Au
Intermediate-rapidity fragments with A=1-14 emitted from 42-137-MeV/nucleon Ar + Au have been measured. Evidence is presented that these fragments arise from a common moving source. Entropy values are extracted from the mass distributions by use of quantum statistical and Hauser-Feshbach theories. The extracted entropy values of S/A≈2-2.4 are much smaller than the values expected from measured deuteron-to-proton ratios, but are still considerably higher than theoretically predicted values
The EPICS Software Framework Moves from Controls to Physics
The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world
Quantum homodyne tomography with a priori constraints
I present a novel algorithm for reconstructing the Wigner function from
homodyne statistics. The proposed method, based on maximum-likelihood
estimation, is capable of compensating for detection losses in a numerically
stable way.Comment: 4 pages, REVTeX, 2 figure
Operational Theory of Homodyne Detection
We discuss a balanced homodyne detection scheme with imperfect detectors in
the framework of the operational approach to quantum measurement. We show that
a realistic homodyne measurement is described by a family of operational
observables that depends on the experimental setup, rather than a single field
quadrature operator. We find an explicit form of this family, which fully
characterizes the experimental device and is independent of a specific state of
the measured system. We also derive operational homodyne observables for the
setup with a random phase, which has been recently applied in an ultrafast
measurement of the photon statistics of a pulsed diode laser. The operational
formulation directly gives the relation between the detected noise and the
intrinsic quantum fluctuations of the measured field. We demonstrate this on
two examples: the operational uncertainty relation for the field quadratures,
and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe
Leading-effect vs. Risk-taking in Dynamic Tournaments: Evidence from a Real-life Randomized Experiment
Two 'order effects' may emerge in dynamic tournaments with information feedback. First, participants adjust effort across stages, which could advantage the leading participant who faces a larger 'effective prize' after an initial victory (leading-effect). Second, participants lagging behind may increase risk at the final stage as they have 'nothing to lose' (risk-taking). We use a randomized natural experiment in professional two-game soccer tournaments where the treatment (order of a stage-specific advantage) and team characteristics, e.g. ability, are independent. We develop an identification strategy to test for leading-effects controlling for risk-taking. We find no evidence of leading-effects and negligible risk-taking effects
- …