3,660 research outputs found
Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields
Using ultrahigh magnetic fields up to 170 T and polarized midinfrared
radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron
resonance in large-area graphene grown by chemical vapor deposition.
Circular-polarization dependent studies reveal strong p-type doping for
as-grown graphene, and the dependence of the cyclotron resonance on radiation
wavelength allows for a determination of the Fermi energy. Thermal annealing
shifts the Fermi energy to near the Dirac point, resulting in the simultaneous
appearance of hole and electron cyclotron resonance in the magnetic quantum
limit, even though the sample is still p-type, due to graphene's linear
dispersion and unique Landau level structure. These high-field studies
therefore allow for a clear identification of cyclotron resonance features in
large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure
Begonia wuzhishanensis (sect. Diploclinium, Begoniaceae), a new species from Hainan Island, China
Background: Hainan is the largest island of the Indo-Burma Biodiversity Hotspot and has the best preserved and most extensive tropical forests in China. A recent study on distribution of endangered species in China identifies southern Hainan as one of eight hotspots for plant conservation in the country. In continuation of our studies of Asian Begonia, we report the discovery of an attractive undescribed species, B. wuzhishanensis C.-I Peng, X.H. Jin & S.M.Ku, from Hainan Island. Results: Living plant of the new species, Begonia wuzhishanensis, was collected in 2009 and cultivated in the experimental greenhouse for morphological and cytological studies. It flowered consecutively in 2012 and 2013 in the experimental greenhouse, Academia Sinica. It was assigned to the large, heterogeneous sect. Diploclinium. The chromosome number of this new species was determined to be 2n = 26. Conclusions: A careful study of literature, herbarium specimens and living plants, both in the wild and in cultivation, support the recognition of the new species Begonia wuzhishanensis, which is described in this paper. Begonia wuzhishanensis is currently known only from Fanyang, Wuzhishan Mountain in the center of the island. A line drawing, color plate, and a distribution map are provided to aid in identification
Numerical Simulation of Vortex Crystals and Merging in N-Point Vortex Systems with Circular Boundary
In two-dimensional (2D) inviscid incompressible flow, low background
vorticity distribution accelerates intense vortices (clumps) to merge each
other and to array in the symmetric pattern which is called ``vortex
crystals''; they are observed in the experiments on pure electron plasma and
the simulations of Euler fluid. Vortex merger is thought to be a result of
negative ``temperature'' introduced by L. Onsager. Slight difference in the
initial distribution from this leads to ``vortex crystals''. We study these
phenomena by examining N-point vortex systems governed by the Hamilton
equations of motion. First, we study a three-point vortex system without
background distribution. It is known that a N-point vortex system with boundary
exhibits chaotic behavior for N\geq 3. In order to investigate the properties
of the phase space structure of this three-point vortex system with circular
boundary, we examine the Poincar\'e plot of this system. Then we show that
topology of the Poincar\'e plot of this system drastically changes when the
parameters, which are concerned with the sign of ``temperature'', are varied.
Next, we introduce a formula for energy spectrum of a N-point vortex system
with circular boundary. Further, carrying out numerical computation, we
reproduce a vortex crystal and a vortex merger in a few hundred point vortices
system. We confirm that the energy of vortices is transferred from the clumps
to the background in the course of vortex crystallization. In the vortex
merging process, we numerically calculate the energy spectrum introduced above
and confirm that it behaves as k^{-\alpha},(\alpha\approx 2.2-2.8) at the
region 10^0<k<10^1 after the merging.Comment: 30 pages, 11 figures. to be published in Journal of Physical Society
of Japan Vol.74 No.
Fractional Laser Photothermolysis for Treatment of Facial Wrinkles in Asians
PURPOSE: To evaluate the safety and efficacy of fractional photothermolysis (FP) in the treatment of facial wrinkles in Asians. 0aMETHODS: A total of 27 Korean patients (Fitzpatrick type III or IV) received 2-3 FP treatment sessions (Sellas; Dinona Inc., Seoul, Korea) spaced two weeks apart. Treatments were performed at settings of 7 to 9 mJ/microthermal treatment zone (MTZ) and a density of 1000 MTZ/cm2. Standardized digital photographs were obtained before each treatment and three months after the final treatment. The evaluations of clinical photographs were performed by three physicians blinded to the study subjects using a five-point grading scale. In addition, the patients' perceived degree of improvement was assessed three months after the final treatment using a five-point grading scale. Side effects were monitored at each follow-up visit. 0aRESULTS: The physicians' assessed degrees of improvement were excellent in three patients (12%), significant in ten (40%), and moderate in seven (28%). The patients' self-assessed degrees of improvement were excellent in five patients (20%), significant in 11 (44%), and moderate in six (24%). Adverse events were limited to transient pain, erythema and edema, except in one case of transient postinflammatory hyperpigmentation. 0aCONCLUSIONS: FP is an effective treatment modality for reducing facial wrinkles with minimal side effects in Asian patients.ope
The First Very Long Baseline Interferometry Image of 44 GHz Methanol Maser with the KVN and VERA Array (KaVA)
We have carried out the first very long baseline interferometry (VLBI)
imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a
millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA
(KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI
Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in
imaging compact maser features with a synthesized beam size of 2.7
milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a
limited number of baselines within the length of shorter than approximately 650
km corresponding to 100 Mlambda in the uv-coverage. The central velocity and
the velocity width of the 44 GHz methanol maser are consistent with those of
the quiescent gas rather than the outflow traced by the SiO thermal line. The
minimum component size among the maser features is ~ 5 mas x 2 mas, which
corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc.
The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0
x 10^{10} K, which are higher than estimated lower limit from a previous Very
Large Array observation with the highest spatial resolution of ~ 50 mas. The 44
GHz class I methanol maser in IRAS 18151-1208 is found to be associated with
the MM2 core, which is thought to be less evolved than another millimeter core
MM1 associated with the 6.7 GHz class II methanol maser.Comment: 19 pages, 3 figure
- …