6 research outputs found

    Me3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines

    Full text link
    A simple and efficient protocol for the construction of 1-aminoisoquinolines was achieved by treating 2-(2-oxo-2- phenylethyl)benzonitriles with amines in the presence of Me 3 Al. The reaction proceeds via a domino nucleophilic addition with subsequent intramolecular cyclisation. This method provides a wide variety of substituted 1-aminoisoquinolines with good func- tional group tolerance. Furthermore, the synthetic utility of this protocol was demonstrated in the successful synthesis of the anti- tumor agent CWJ-a-5 in gram scale

    Tuning the Photophysical and Electroluminescence Properties in Asymmetrically Tetrasubstituted Bipolar Carbazoles by Functional Group Disposition

    No full text
    Carbazoles decorated with both donor and acceptor fragments offer a classical way to optimize bipolar functional properties. In this work, a series of carbazoles featuring triphenylamine donors and cyano acceptors are synthesized and their structure–property relationship is studied. The effects of connectivity and the chromophore number density on photophysical and electroluminescence properties are investigated. The position of the triphenylamine donor on the 3,6-dicyanocarbazole nucleus significantly affected the photophysical and electroluminescence properties. The dye possessing triphenylamine on C2 and C7 displayed a red shift in absorption when compared with the structural analogue with triphenylamine tethered to C1 and C8. The emission wavelength of the dyes are tunable from blue to green, by altering the position of triphenylamine and cyano substituents. All of the dyes exhibited positive solvatochromism in emission, attributable to the photoinduced intramolecular charge transfer from the triphenylamine donor to the cyano acceptor. However, the extent of charge transfer and hybridization of local and charge-transfer-excited states is highly dependent on the position of triphenylamine and cyano groups on the carbazole nucleus. Dyes containing cyano substituents at C2 and C7 showed a prolonged excited state lifetime, broad emission, and large Stokes shifts, indicating the presence of a higher charge transfer component in the excited state. The dyes displayed exceptional thermal stability with the onset decomposition temperature (10% weight loss) > 350 °C. Electrochemical measurements revealed low oxidation potential for dyes containing triphenylamine at C3 and/or C6. Addition of a cyano acceptor on carbazole led to the stabilization of lowest unoccupied molecular orbital. Furthermore, the materials were tested as emitting dopants in solution-processable multilayer organic light emitting diodes and found to display deep-blue/sky-blue electroluminescence with external quantum efficiency as high as 6.5% for a deep-blue emitter (CIE<i>y</i> ∼ 0.06)
    corecore