18 research outputs found

    Survey of texture mapping techniques for representing and rendering volumetric mesostructure

    Get PDF
    Representation and rendering of volumetric mesostructure using texture mapping can potentially allow the display of highly detailed, animated surfaces at a low performance cost. Given the need for consistently more detailed and dynamic worlds rendered in real-time, volumetric texture mapping now becomes an area of great importance.In this survey, we review the developments of algorithms and techniques for representing volumetric mesostructure as texture-mapped detail. Our goal is to provide researchers with an overview of novel contributions to volumetric texture mapping as a starting point for further research and developers with a comparative review of techniques, giving insight into which methods would be fitting for particular tasks.We start by defining the scope of our domain and provide background information regarding mesostructure and volumetric texture mapping. Existing techniques are assessed in terms of content representation and storage as well as quality and performance of parameterization and rendering. Finally, we provide insights to the field and opportunities for research directions in terms of real-time volumetric texture-mapped surfaces under deformation

    Guided Ecological Simulation for Artistic Editing of Plant Distributions in Natural Scenes

    Get PDF
    In this paper we present a novel approach to author vegetation cover of large natural scenes. Unlike stochastic scatter-instancing tools for plant placement (such as multi-class blue noise generators), we use a simulation based on ecological processes to produce layouts of plant distributions. In contrast to previous work on ecosystem simulation, however, we propose a framework of global and local editing operators that can be used to interact directly with the live simulation. The result facilitates an artist-directed workflow with both spatially and temporally-varying control over the simulation's output. We compare our result against random-scatter solutions, also employing such approaches as a seed to our algorithm. We demonstrate the versatility of our approach within an iterative authoring workflow, comparing it to typical artistic methods

    A brainwide atlas of synapses across the mouse life span

    Get PDF
    Synapses connect neurons together to form the circuits of the brain, and their molecular composition controls innate and learned behavior. We analyzed the molecular and morphological diversity of 5 billion excitatory synapses at single-synapse resolution across the mouse brain from birth to old age. A continuum of changes alters synapse composition in all brain regions across the life span. Expansion in synapse diversity produces differentiation of brain regions until early adulthood, and compositional changes cause dedifferentiation in old age. The spatiotemporal synaptome architecture of the brain potentially accounts for life-span transitions in intellectual ability, memory, and susceptibility to behavioral disorders

    Architecture of the Mouse Brain Synaptome

    Get PDF
    Synapses are found in vast numbers in the brain and contain complex proteomes. We developed genetic labeling and imaging methods to examine synaptic proteins in individual excitatory synapses across all regions of the mouse brain. Synapse catalogs were generated from the molecular and morphological features of a billion synapses. Each synapse subtype showed a unique anatomical distribution, and each brain region showed a distinct signature of synapse subtypes. Whole-brain synaptome cartography revealed spatial architecture from dendritic to global systems levels and previously unknown anatomical features. Synaptome mapping of circuits showed correspondence between synapse diversity and structural and functional connectomes. Behaviorally relevant patterns of neuronal activity trigger spatiotemporal postsynaptic responses sensitive to the structure of synaptome maps. Areas controlling higher cognitive function contain the greatest synapse diversity, and mutations causing cognitive disorders reorganized synaptome maps. Synaptome technology and resources have wide-ranging application in studies of the normal and diseased brain

    Architecture of the Mouse Brain Synaptome

    Get PDF
    Synapses are found in vast numbers in the brain and contain complex proteomes. We developed genetic labeling and imaging methods to examine synaptic proteins in individual excitatory synapses across all regions of the mouse brain. Synapse catalogs were generated from the molecular and morphological features of a billion synapses. Each synapse subtype showed a unique anatomical distribution, and each brain region showed a distinct signature of synapse subtypes. Whole-brain synaptome cartography revealed spatial architecture from dendritic to global systems levels and previously unknown anatomical features. Synaptome mapping of circuits showed correspondence between synapse diversity and structural and functional connectomes. Behaviorally relevant patterns of neuronal activity trigger spatiotemporal postsynaptic responses sensitive to the structure of synaptome maps. Areas controlling higher cognitive function contain the greatest synapse diversity, and mutations causing cognitive disorders reorganized synaptome maps. Synaptome technology and resources have wide-ranging application in studies of the normal and diseased brain

    A brain atlas of synapse protein lifetime across the mouse lifespan

    Get PDF
    The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease

    A brain atlas of synapse protein lifetime across the mouse lifespan

    Get PDF
    The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease

    Survey of texture mapping techniques for representing and rendering volumetric mesostructure

    Get PDF
    Representation and rendering of volumetric mesostructure using texture mapping can potentially allow the display of highly detailed, animated surfaces at a low performance cost. Given the need for consistently more detailed and dynamic worlds rendered in real-time, volumetric texture mapping now becomes an area of great importance.In this survey, we review the developments of algorithms and techniques for representing volumetric mesostructure as texture-mapped detail. Our goal is to provide researchers with an overview of novel contributions to volumetric texture mapping as a starting point for further research and developers with a comparative review of techniques, giving insight into which methods would be fitting for particular tasks.We start by defining the scope of our domain and provide background information regarding mesostructure and volumetric texture mapping. Existing techniques are assessed in terms of content representation and storage as well as quality and performance of parameterization and rendering. Finally, we provide insights to the field and opportunities for research directions in terms of real-time volumetric texture-mapped surfaces under deformation

    GPU-accelerated depth codec for real-time, high-quality light field reconstruction

    No full text
    Pre-calculated depth information is essential for efficient light field video rendering, due to the prohibitive cost of depth estimation from color when real-time performance is desired. Standard state-of-the-art video codecs fail to satisfy such performance requirements when the amount of data to be decoded becomes too large. In this paper, we propose a depth image and video codec based on block compression, that exploits typical characteristics of depth streams, drawing inspiration from S3TC texture compression and geometric wavelets. Our codec offers very fast hardware-accelerated decoding that also allows partial extraction for view-dependent decoding. We demonstrate the effectiveness of our codec in a number of multi-view 360-degree video datasets, with quantitative analysis of storage cost, reconstruction quality, and decoding performance

    A brain-wide atlas of synapses across the mouse lifespan

    Get PDF
    Synapses connect neurons together to form the circuits of the brain and their molecular composition controls innate and learned behavior. We have analyzed the molecular and morphological diversity of five billion excitatory synapses at single-synapse resolution across the mouse brain from birth to old age. A continuum of changes alters synapse composition in all brain regions across the lifespan. Expansion in synapse diversity produces differentiation of brain regions until early adulthood and compositional changes cause dedifferentiation in old age. The spatiotemporal synaptome architecture of the brain potentially accounts for lifespan transitions in intellectual ability, memory, and susceptibility to behavioral disorders
    corecore