24 research outputs found

    The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    No full text
    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Seasonal transitions and the westerly jet in the Holocene East Asian summer monsoon

    No full text
    The Holocene East Asian summer monsoon (EASM) was previously characterized as a trend toward weaker monsoon intensity paced by orbital insolation. It is demonstrated here that this evolution is more accurately characterized as changes in the transition timing and duration of the EASM seasonal stages (spring, pre-mei-yu, mei-yu, midsummer), and tied to the north-south displacement of the westerlies relative to Tibet. To this end, time-slice simulations across the Holocene are employed using an atmospheric general circulation model. Self-organizing maps are used to objectively identify the transition timing and duration of the EASM seasonal stages. Compared to the late Holocene, an earlier onset of mei-yu and an earlier transition from mei-yu to midsummer in the early to mid-Holocene are found, resulting in a shortened mei-yu and prolonged midsummer stage. These changes are accompanied by an earlier northward positioning of the westerlies relative to Tibet. Invoking changes to seasonal transitions also provides a more satisfactory explanation for two key observations of Holocene East Asian climate: the "asynchronous Holocene optimum" and changes to dust emissions. A mechanism is proposed to explain the altered EASM seasonality in the simulated early to mid-Holocene. The insolation increase over the boreal summer reduces the pole-equator temperature gradient, leading to northward-shifted and weakened westerlies. The meridional position of the westerlies relative to the Tibetan Plateau determines the onset of mei-yu and possibly the onset of the midsummer stage. The northward shift in the westerlies triggers earlier seasonal rainfall transitions and, in particular, a shorter mei-yu and longer midsummer stage
    corecore