16,397 research outputs found

    Spin Accumulation in the Extrinsic Spin Hall Effect

    Get PDF
    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.Comment: 5 pages, 3 figure

    Negative reflections of electromagnetic waves in chiral media

    Get PDF
    We investigate the reflection properties of electromagnetic/optical waves in isotropic chiral media. When the chiral parameter is strong enough, we show that an unusual \emph{negative reflection} occurs at the interface of the chiral medium and a perfectly conducting plane, where the incident wave and one of reflected eigenwaves lie in the same side of the boundary normal. Using such a property, we further demonstrate that such a conducting plane can be used for focusing in the strong chiral medium. The related equations under paraxial optics approximation are deduced. In a special case of chiral medium, the chiral nihility, one of the bi-reflections disappears and only single reflected eigenwave exists, which goes exactly opposite to the incident wave. Hence the incident and reflected electric fields will cancel each other to yield a zero total electric field. In another word, any electromagnetic waves entering the chiral nihility with perfectly conducting plane will disappear.Comment: 5 pages, 5 figure

    Semimetallic molecular hydrogen at pressure above 350 GPa

    Full text link
    According to the theoretical predictions, insulating molecular hydrogen dissociates and transforms to an atomic metal at pressures P~370-500 GPa. In another scenario, the metallization first occurs in the 250-500 GPa pressure range in molecular hydrogen through overlapping of electronic bands. The calculations are not accurate enough to predict which option is realized. Here we show that at a pressure of ~360 GPa and temperatures <200 K the hydrogen starts to conduct, and that temperature dependence of the electrical conductivity is typical of a semimetal. The conductivity, measured up to 440 GPa, increases strongly with pressure. Raman spectra, measured up to 480 GPa, indicate that hydrogen remains a molecular solid at pressures up to 440 GPa, while at higher pressures the Raman signal vanishes, likely indicating further transformation to a good molecular metal or to an atomic state

    Domain-mediated interactions for protein subfamily identification

    Get PDF
    Within a protein family, proteins with the same domain often exhibit different cellular functions, despite the shared evolutionary history and molecular function of the domain. We hypothesized that domain-mediated interactions (DMIs) may categorize a protein family into subfamilies because the diversified functions of a single domain often depend on interacting partners of domains. Here we systematically identified DMI subfamilies, in which proteins share domains with DMI partners, as well as with various functional and physical interaction networks in individual species. In humans, DMI subfamily members are associated with similar diseases, including cancers, and are frequently co-associated with the same diseases. DMI information relates to the functional and evolutionary subdivisions of human kinases. In yeast, DMI subfamilies contain proteins with similar phenotypic outcomes from specific chemical treatments. Therefore, the systematic investigation here provides insights into the diverse functions of subfamilies derived from a protein family with a link-centric approach and suggests a useful resource for annotating the functions and phenotypic outcomes of proteins.11Ysciescopu

    Intrinsic Spin Hall Effect in the presence of Extrinsic Spin-Orbit Scattering

    Full text link
    Intrinsic and extrinsic spin Hall effects are considered together on an equal theoretical footing for the Rashba spin-orbit coupling in two-dimensional (2D) electron and hole systems, using the diagrammatic method for calculating the spin Hall conductivity. Our analytic theory for the 2D holes shows the expected lowest-order additive result for the spin Hall conductivity. But, the 2D electrons manifest a very surprising result, exhibiting a non-analyticity in the Rashba coupling strength α\alpha where the strictly extrinsic spin Hall conductivity (for α=0\alpha = 0) cannot be recovered from the α0\alpha \to 0 limit of the combined theory. The theoretical results are discussed in the context of existing experimental results.Comment: 5 pages, 2 figure

    A Higher-Accuracy van der Waals Density Functional

    Get PDF
    We propose a second version of the van der Waals density functional (vdW-DF2) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in determining the vdW kernel. The predicted binding energy, equilibrium separation, and potential-energy curve shape are close to those of accurate quantum chemical calculations on 22 duplexes. We anticipate the enabling of chemically accurate calculations in sparse materials of importance for condensed-matter, surface, chemical, and biological physics.Comment: 14 pages, 10 figure

    Quantized Casimir Force

    Full text link
    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large separation (d) limit where retardation effects are essential we find i) that the Casimir force is quantized in units of 3\hbar c \alpha^2/(8\pi^2 d^4), and ii) that the force is repulsive for mirrors with same type of carrier, and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials like graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor \nu=0 quantum Hall state.Comment: 4.2 page

    Spin Hall Effect in Doped Semiconductor Structures

    Full text link
    In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxySJ/σxySS(/τ)/ϵF\sigma_{xy}^{SJ}/\sigma_{xy}^{SS} \sim (\hbar/\tau)/\epsilon_F, with τ\tau being the transport relaxation time. Motivated by recent experimental work we apply our theory to n- and p-doped 3D and 2D GaAs structures, obtaining σs/σc103104\sigma_s/\sigma_c \sim 10^{-3}-10^{-4} where σs(c)\sigma_{s(c)} is the spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of Kato \textit{et al}. [Science \textbf{306}, 1910 (2004)] in n-doped 3D GaAs system.Comment: 5 pages, 2 figure

    Physics of Quantum Relativity through a Linear Realization

    Full text link
    The idea of quantum relativity as a generalized, or rather deformed, version of Einstein (special) relativity has been taking shape in recent years. Following the perspective of deformations, while staying within the framework of Lie algebra, we implement explicitly a simple linear realization of the relativity symmetry, and explore systematically the resulting physical interpretations. Some suggestions we make may sound radical, but are arguably natural within the context of our formulation. Our work may provide a new perspective on the subject matter, complementary to the previous approach(es), and may lead to a better understanding of the physics.Comment: 27 pages in Revtex, no figure; proof-edited version to appear in Phys.Rev.
    corecore