407 research outputs found
Recommended from our members
Topological Insulator Nanowires and Nanoribbons
Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states
AQFT from n-functorial QFT
There are essentially two different approaches to the axiomatization of
quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and
functorial QFT, going back to Atiyah and Segal. More recently, based on ideas
by Baez and Dolan, the latter is being refined to "extended" functorial QFT by
Freed, Hopkins, Lurie and others. The first approach uses local nets of
operator algebras which assign to each patch an algebra "of observables", the
latter uses n-functors which assign to each patch a "propagator of states".
In this note we present an observation about how these two axiom systems are
naturally related: we demonstrate under mild assumptions that every
2-dimensional extended Minkowskian QFT 2-functor ("parallel surface transport")
naturally yields a local net. This is obtained by postcomposing the propagation
2-functor with an operation that mimics the passage from the Schroedinger
picture to the Heisenberg picture in quantum mechanics.
The argument has a straightforward generalization to general
pseudo-Riemannian structure and higher dimensions.Comment: 39 pages; further examples added: Hopf spin chains and asymptotic
inclusion of subfactors; references adde
Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation
MD simulations based on an empirical potential energy surface were used to
study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations
reveal that inner walls of the bamboo structure start to nucleate at the
junction between the outer nanotube wall and the catalyst particle. In
agreement with experimental results, the simulations show that BCNTs nucleate
at higher dissolved carbon concentrations (i.e., feedstock pressures) than
those where non-bamboolike carbon nanotubes are nucleated
Dicyclic Horizontal Symmetry and Supersymmetric Grand Unification
It is shown how to use as horizontal symmetry the dicyclic group in a supersymmetric unification where
one acts on the first and second families, in a horizontal doublet, and
the other acts on the third. This can lead to acceptable quark masses and
mixings, with an economic choice of matter supermultiplets, and charged lepton
masses can be accommodated.Comment: 10 pages, LaTe
RVB Contribution to Superconductivity in
We view as electronically equivalent to (non-staggered) graphite
( layer) that has undergone a zero gap semiconductor to a superconductor
phase transition by a large c-axis (chemical) pressure due to layers.
Further, like the \ppi bonded planar organic molecules, graphite is an old
resonating valence bond (RVB) system. The RVB's are the `preexisting cooper
pairs' in the `parental' zero gap semiconducting (graphite) sheets that
manifests themselves as a superconducting ground state of the transformed
metal. Some consequences are pointed out.Comment: 4 pages, 2 figure, RevTex. Based on a talk given at the Institute
Seminar Week, IMSc, Madras (12-16, Feb. 2001
Generic properties of a quasi-one dimensional classical Wigner crystal
We studied the structural, dynamical properties and melting of a
quasi-one-dimensional system of charged particles, interacting through a
screened Coulomb potential. The ground state energy was calculated and,
depending on the density and the screening length, the system crystallizes in a
number of chains. As a function of the density (or the confining potential),
the ground state configurations and the structural transitions between them
were analyzed both by analytical and Monte Carlo calculations. The system
exhibits a rich phase diagram at zero temperature with continuous and
discontinuous structural transitions. We calculated the normal modes of the
Wigner crystal and the magneto-phonons when an external constant magnetic field
is applied. At finite temperature the melting of the system was studied via
Monte Carlo simulations using the (MLC). The
melting temperature as a function of the density was obtained for different
screening parameters. Reentrant melting as a function of the density was found
as well as evidence of directional dependent melting. The single chain regime
exhibits anomalous melting temperatures according to the MLC and as a check we
study the pair correlation function at different densities and different
temperatures, formulating a different criterion. Possible connection with
recent theoretical and experimental results are discussed and experiments are
proposed.Comment: 13 pages text, 21 picture
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Recovered memories, satanic abuse, Dissociative Identity Disorder and false memories in the UK: a survey of Clinical Psychologists and Hypnotherapists
An online survey was conducted to examine psychological therapistsâ experiences of, and beliefs about, cases of recovered memory, satanic / ritualistic abuse, Multiple Personality Disorder / Dissociative Identity Disorder, and false memory. Chartered Clinical Psychologists (n=183) and Hypnotherapists (n=119) responded. In terms of their experiences, Chartered Clinical Psychologists reported seeing more cases of satanic / ritualistic abuse compared to Hypnotherapists who, in turn, reported encountering more cases of childhood sexual abuse recovered for the first time in therapy, and more cases of suspected false memory. Chartered Clinical Psychologists were more likely to rate the essential accuracy of reports of satanic / ritualistic abuse as higher than Hypnotherapists. Belief in the accuracy of satanic / ritualistic abuse and Multiple Personality Disorder / Dissociative Identity Disorder reports correlated negatively with the belief that false memories were possible
RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies
Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±
- âŠ