89 research outputs found

    Prediction of Planet Yields by the PRime-focus Infrared Microlensing Experiment Microlensing Survey

    Full text link
    The PRime-focus Infrared Microlensing Experiment (PRIME) will be the first to conduct a dedicated near infrared (NIR) microlensing survey by using a 1.8m telescope with a wide field of view of 1.45 deg2{\rm deg^{2}} at the South African Astronomical Observatory (SAAO). The major goals of the PRIME microlensing survey are to measure the microlensing event rate in the inner Galactic bulge to help design the observing strategy for the exoplanet microlensing survey by the {\it Nancy Grace Roman Space Telescope} and to make a first statistical measurement of exoplanet demographics in the central bulge fields where optical observations are very difficult owing to the high extinction in these fields. Here we conduct a simulation of the PRIME microlensing survey to estimate its planet yields and determine the optimal survey strategy, using a Galactic model optimized for the inner Galactic bulge. In order to maximize the number of planet detections and the range of planet mass, we compare the planet yields among four observation strategies. Assuming {the \citet{2012Natur.481..167C} mass function as modified by \citet{2019ApJS..241....3P}}, we predict that PRIME will detect planetary signals for 42−5242-52 planets (1−21-2 planets with Mp≀1M⊕M_p \leq 1 M_\oplus, 22−2522-25 planets with mass 1M⊕<Mp≀100M⊕1 M_\oplus < M_p \leq 100 M_\oplus, 19−2519-25 planets 100M⊕<Mp≀10000M⊕100 M_\oplus < M_p \leq 10000 M_\oplus), per year depending on the chosen observation strategy.Comment: 25 pages, 17 figures, and 3 tables. Accept for publication in The Astronomical Journa

    An Earth-Mass Planet In A Time Of Covid-19: Kmt-2020-Blg-0414Lb

    Get PDF
    We report the discovery of KMT-2020-BLG-0414Lb, with a planet-to-host mass ratio q (2) = 0.9-1.2 x 10(-5) = 3-4 circle plus at 1 sigma, which is the lowest mass-ratio microlensing planet to date. Together with two other recent discoveries (4 less than or similar to q/q (circle plus) less than or similar to 6), it fills out the previous empty sector at the bottom of the triangular (log s, log q) diagram, where s is the planet-host separation in units of the angular Einstein radius theta E. Hence, these discoveries call into question the existence, or at least the strength, of the break in the mass-ratio function that was previously suggested to account for the paucity of very low-q planets. Due to the extreme magnification of the event, A (max) similar to 1450 for the underlying single-lens event, its light curve revealed a second companion with q (3) similar to 0.05 and |log s (3)| similar to 1, i.e., a factor similar to 10 closer to or farther from the host in projection. The measurements of the microlens parallax pi (E) and the angular Einstein radius theta E allow estimates of the host, planet and second companion masses, (M (1), M (2), M (3)) similar to (0.3 M (circle dot), 1.0 M (circle plus), 17 M-J ), the planet and second companion projected separations, (a (perpendicular to,2), a (perpendicular to,3)) similar to (1.5, 0.15 or 15) au, and system distance D (L) similar to 1 kpc. The lens could account for most or all of the blended light (I similar to 19.3) and so can be studied immediately with high-resolution photometric and spectroscopic observations that can further clarify the nature of the system. The planet was found as part of a new program of high-cadence follow-up observations of high-magnification events. The detection of this planet, despite the considerable difficulties imposed by COVID-19 (two KMT sites and OGLE were shut down), illustrates the potential utility of this program

    A Planetary Microlensing Event with an Unusually Red Source Star: MOA-2011-BLG-291

    Full text link
    We present the analysis of planetary microlensing event MOA-2011-BLG-291, which has a mass ratio of q=(3.8±0.7)×10−4q=(3.8\pm0.7)\times10^{-4} and a source star that is redder (or brighter) than the bulge main sequence. This event is located at a low Galactic latitude in the survey area that is currently planned for NASA's WFIRST exoplanet microlensing survey. This unusual color for a microlensed source star implies that we cannot assume that the source star is in the Galactic bulge. The favored interpretation is that the source star is a lower main sequence star at a distance of DS=4.9±1.3 D_S=4.9\pm1.3\,kpc in the Galactic disk. However, the source could also be a turn-off star on the far side of the bulge or a sub-giant in the far side of the Galactic disk if it experiences significantly more reddening than the bulge red clump stars. However, these possibilities have only a small effect on our mass estimates for the host star and planet. We find host star and planet masses of Mhost=0.15−0.10+0.27M⊙M_{\rm host} =0.15^{+0.27}_{-0.10}M_\odot and mp=18−12+34M⊕m_p=18^{+34}_{-12}M_\oplus from a Bayesian analysis with a standard Galactic model under the assumption that the planet hosting probability does not depend on the host mass or distance. However, if we attempt to measure the host and planet masses with host star brightness measurements from high angular resolution follow-up imaging, the implied masses will be sensitive to the host star distance. The WFIRST exoplanet microlensing survey is expected to use this method to determine the masses for many of the planetary systems that it discovers, so this issue has important design implications for the WFIRST exoplanet microlensing survey

    Spectroscopic Mass and Host-star Metallicity Measurements for Newly Discovered Microlensing Planet OGLE-2018-BLG-0740Lb

    Full text link
    We report the discovery of the microlensing planet OGLE-2018-BLG-0740Lb. The planet is detected with a very strong signal of Δχ2∌4630\Delta\chi^2\sim 4630, but the interpretation of the signal suffers from two types of degeneracies. One type is caused by the previously known close/wide degeneracy, and the other is caused by an ambiguity between two solutions, in which one solution requires to incorporate finite-source effects, while the other solution is consistent with a point-source interpretation. Although difficult to be firmly resolved based on only the photometric data, the degeneracy is resolved in strong favor of the point-source solution with the additional external information obtained from astrometric and spectroscopic observations. The small astrometric offset between the source and baseline object supports that the blend is the lens and this interpretation is further secured by the consistency of the spectroscopic distance estimate of the blend with the lensing parameters of the point-source solution. The estimated mass of the host is 1.0±0.1 M⊙1.0\pm 0.1~M_\odot and the mass of the planet is 4.5±0.6 MJ4.5\pm 0.6~M_{\rm J} (close solution) or 4.8±0.6 MJ4.8\pm 0.6~M_{\rm J} (wide solution) and the lens is located at a distance of 3.2±0.53.2\pm 0.5~kpc. The bright nature of the lens, with I∌17.1I\sim 17.1 (V∌18.2V\sim 18.2), combined with its dominance of the observed flux suggest that radial-velocity (RV) follow-up observations of the lens can be done using high-resolution spectrometers mounted on large telescopes, e.g., VLT/ESPRESSO, and this can potentially not only measure the period and eccentricity of the planet but also probe for close-in planets. We estimate that the expected RV amplitude would be ∌60sin⁥i m s−1\sim 60\sin i ~{\rm m~s}^{-1}.Comment: 12 pages, 11 figures, 4 table

    Candidate Brown-dwarf Microlensing Events with Very Short Timescales and Small Angular Einstein Radii

    Get PDF
    Short-timescale microlensing events are likely to be produced by substellar brown dwarfs (BDs), but it is difficult to securely identify BD lenses based on only event timescales t_E because short-timescale events can also be produced by stellar lenses with high relative lens-source proper motions. In this paper, we report three strong candidate BD-lens events found from the search for lensing events not only with short timescales (t_E â‰Č 6 days) but also with very small angular Einstein radii (Ξ_E â‰Č 0.05 mas) among the events that have been found in the 2016–2019 observing seasons. These events include MOA-2017-BLG-147, MOA-2017-BLG-241, and MOA-2019-BLG-256, in which the first two events are produced by single lenses and the last event is produced by a binary lens. From the Monte Carlo simulations of Galactic events conducted with the combined t_E and Ξ_E constraint, it is estimated that the lens masses of the individual events are 0.051^(+0.100)_(−0.027) M⊙, 0.044^(+0.090)_(−0.023) M⊙, and 0.046^(+0.067)_(−0.023) M⊙/0.038^(+0.056)_(−0.019) M⊙ and the probability of the lens mass smaller than the lower limit of stars is ~80% for all events. We point out that routine lens mass measurements of short-timescale lensing events require survey-mode space-based observations

    OGLE-2018-BLG-0022: First Prediction of an Astrometric Microlensing Signal from a Photometric Microlensing Event

    Full text link
    In this work, we present the analysis of the binary microlensing event OGLE-2018-BLG-0022 that is detected toward the Galactic bulge field. The dense and continuous coverage with the high-quality photometry data from ground-based observations combined with the space-based {\it Spitzer} observations of this long time-scale event enables us to uniquely determine the masses M1=0.40±0.05 M⊙M_1=0.40 \pm 0.05~M_\odot and M2=0.13±0.01 M⊙M_2=0.13\pm 0.01~M_\odot of the individual lens components. Because the lens-source relative parallax and the vector lens-source relative proper motion are unambiguously determined, we can likewise unambiguously predict the astrometric offset between the light centroid of the magnified images (as observed by the {\it Gaia} satellite) and the true position of the source. This prediction can be tested when the individual-epoch {\it Gaia} astrometric measurements are released.Comment: 10 pages, 10 figures, 4 table

    SpitzerSpitzer Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf

    Full text link
    We report the discovery of a SpitzerSpitzer microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio q∌2×10−4q \sim 2\times10^{-4}. The planetary signal, which is characterized by a short (∌1 day)(\sim 1~{\rm day}) "bump" on the rising side of the lensing light curve, was densely covered by ground-based surveys. We find that the signal can be explained by a bright source that fully envelops the planetary caustic, i.e., a "Hollywood" geometry. Combined with the source proper motion measured from GaiaGaia, the SpitzerSpitzer satellite parallax measurement makes it possible to precisely constrain the lens physical parameters. The preferred solution, in which the planet perturbs the minor image due to lensing by the host, yields a Uranus-mass planet with a mass of Mp=13.9±1.6 M⊕M_{\rm p} = 13.9\pm1.6~M_{\oplus} orbiting a mid M-dwarf with a mass of Mh=0.23±0.03 M⊙M_{\rm h} = 0.23\pm0.03~M_{\odot}. There is also a second possible solution that is substantially disfavored but cannot be ruled out, for which the planet perturbs the major image. The latter solution yields Mp=1.2±0.2 M⊕M_{\rm p} = 1.2\pm0.2~M_{\oplus} and Mh=0.15±0.02 M⊙M_{\rm h} = 0.15\pm0.02~M_{\odot}. By combining the microlensing and GaiaGaia data together with a Galactic model, we find in either case that the lens lies on the near side of the Galactic bulge at a distance DL∌6±1 kpcD_{\rm L} \sim 6\pm1~{\rm kpc}. Future adaptive optics observations may decisively resolve the major image/minor image degeneracy.Comment: 34 pages, 8 figures, Submitted to AAS journa

    Free-Floating planet Mass Function from MOA-II 9-year survey towards the Galactic Bulge

    Full text link
    We present the first measurement of the mass function of free-floating planets (FFP) or very wide orbit planets down to an Earth mass, from the MOA-II microlensing survey in 2006-2014. Six events are likely to be due to planets with Einstein radius crossing times, tE<0.5t_{\rm E}<0.5days, and the shortest has tE=0.057±0.016t_{\rm E} = 0.057\pm 0.016days and an angular Einstein radius of ΞE=0.90±0.14ÎŒ\theta_{\rm E} = 0.90\pm 0.14\muas. We measure the detection efficiency depending on both tEt_{\rm E} and ΞE\theta_{\rm E} with image level simulations for the first time. These short events are well modeled by a power-law mass function, dN4/dlog⁥M=(2.18−1.40+0.52)×(M/8 M⊕)−α4dN_4/d\log M = (2.18^{+0.52}_{-1.40})\times (M/8\,M_\oplus)^{-\alpha_4} dex−1^{-1}star−1^{-1} with α4=0.96−0.27+0.47\alpha_4 = 0.96^{+0.47}_{-0.27} for M/M⊙<0.02M/M_\odot < 0.02. This implies a total of f=21−13+23f= 21^{+23}_{-13} FFP or very wide orbit planets of mass 0.33<M/M⊕<66600.33<M/M_\oplus < 6660 per star, with a total mass of 80−47+73M⊕80^{+73}_{-47} M_\oplus per star. The number of FFPs is 19−13+2319_{-13}^{+23} times the number of planets in wide orbits (beyond the snow line), while the total masses are of the same order. This suggests that the FFPs have been ejected from bound planetary systems that may have had an initial mass function with a power-law index of α∌0.9\alpha\sim 0.9, which would imply a total mass of 171−52+80M⊕171_{-52}^{+80} M_\oplus star−1^{-1}. This model predicts that Roman Space Telescope will detect 988−566+1848988^{+1848}_{-566} FFPs with masses down to that of Mars (including 575−424+1733575^{+1733}_{ -424} with 0.1≀M/M⊕≀10.1 \le M/M_\oplus \le 1). The Sumi(2011) large Jupiter-mass FFP population is excluded.Comment: 17 pages, 7 figures, accepted for publication in A
    • 

    corecore