113 research outputs found

    Interplay between superconductivity and itinerant magnetism in underdoped Ba1−x_{1-x}Kx_xFe2_2As2_2 (x=x= 0.2) probed by the response to controlled point-like disorder

    Full text link
    The response of superconductors to controlled introduction of point-like disorder is an important tool to probe their microscopic electronic collective behavior. In the case of iron-based superconductors (IBS), magnetic fluctuations presumably play an important role in inducing high temperature superconductivity. In some cases, these two seemingly incompatible orders coexist microscopically. Therefore, understanding how this unique coexistence state is affected by disorder can provide important information about the microscopic mechanisms involved. In one of the most studied pnictide family, hole-doped Ba1−x_{1-x}Kx_xFe2_2As2_2 (BaK122), this coexistence occurs over a wide range of doping levels, 0.16~≲x≲\lesssim x \lesssim ~0.25. We used relativistic 2.5 MeV electrons to induce vacancy-interstitial (Frenkel) pairs that act as efficient point-like scattering centers. Upon increasing dose of irradiation, the superconducting transition temperature TcT_c decreases dramatically. In the absence of nodes in the order parameter this provides a strong support for a sign-changing s±s_{\pm} pairing. Simultaneously, in the normal state, there is a strong violation of the Matthiessen's rule and a decrease (surprisingly, at the same rate as TcT_c) of the magnetic transition temperature TsmT_{sm}, which indicates the itinerant nature of the long-range magnetic order. Comparison of the hole-doped BaK122 with electron-doped Ba(Fex_xCo1−x_{1-x})2_2As2_2 (FeCo122) with similar Tsm∼T_{sm}\sim110~K, x=x=0.02, reveals significant differences in the normal states, with no apparent Matthiessen's rule violation above TsmT_{sm} on the electron-doped side. We interpret these results in terms of the distinct impact of impurity scattering on the competing itinerant antiferromagnetic and s±s_{\pm} superconducting orders

    Vortex liquid correlations induced by in-plane field in underdoped Bi2Sr2CaCu2O8+d

    Full text link
    By measuring the Josephson Plasma Resonance, we have probed the influence of an in-plane magnetic field on the pancake vortex correlations along the c-axis in heavily underdoped Bi2Sr2CaCu2O8+d (Tc = 72.4 +/- 0.6 K) single crystals both in the vortex liquid and in the vortex solid phase. Whereas the in-plane field enhances the interlayer phase coherence in the liquid state close to the melting line, it slightly depresses it in the solid state. This is interpreted as the result of an attractive force between pancake vortices and Josephson vortices, apparently also present in the vortex liquid state. The results unveil a boundary between a correlated vortex liquid in which pancakes adapt to Josephson vortices, and the usual homogeneous liquid.Comment: 2 pages, submitted to the Proceedings of M2S HTSC VIII Dresde

    Do columnar defects produce bulk pinning?

    Full text link
    From magneto-optical imaging performed on heavy-ion irradiated YBaCuO single crystals, it is found that at fields and temperatures where strong single vortex pinning by individual irradiation-induced amorphous columnar defects is to be expected, vortex motion is limited by the nucleation of vortex kinks at the specimen surface rather than by half-loop nucleation in the bulk. In the material bulk, vortex motion occurs through (easy) kink sliding. Depinning in the bulk determines the screening current only at fields comparable to or larger than the matching field, at which the majority of moving vortices is not trapped by an ion track.Comment: 5 pages, 5 figures, submitted to Physical Review Letter

    Comparative study of the effects of electron irradiation and natural disorder in single crystals of SrFe2_{2}(As1−x_{1-x}Px_x)2_2 (x=x=0.35) superconductor

    Get PDF
    London penetration depth, λ(T)\lambda(T), was measured in single crystals of SrFe2_2(As1−x_{1-x}Px_x)2_2 (x=x=0.35) iron - based superconductor. The influence of disorder on the transition temperature, TcT_c, and on λ(T)\lambda(T) was investigated. The effects of scattering controlled by the annealing of as-grown crystals was compared with the effects of artificial disorder introduced by 2.5~MeV electron irradiation. The low temperature behavior of λ(T)\lambda(T) can be described by a power-law function, Δλ(T)=ATn\Delta \lambda (T)=AT^n, with the exponent nn close to one in pristine annealed samples, as expected for superconducting gap with line nodes. Upon 1.2×10191.2 \times 10^{19} \ecm irradiation, the exponent nn increases rapidly exceeding a dirty limit value of n=n= 2 implying that the nodes in the superconducting gap are accidental and can be lifted by the disorder. The variation of the exponent nn with TcT_c is much stronger in the irradiated crystals compared to the crystals in which disorder was controlled by the annealing of the growth defects. We discuss the results in terms of different influence of different types of disorder on intra- and inter- band scattering

    Disorder-induced topological change of the superconducting gap structure in iron pnictides

    Full text link
    In superconductors with unconventional pairing mechanisms, the energy gap in the excitation spectrum often has nodes, which allow quasiparticle excitations at low energies. In many cases, e.g. dd-wave cuprate superconductors, the position and topology of nodes are imposed by the symmetry, and thus the presence of gapless excitations is protected against disorder. Here we report on the observation of distinct changes in the gap structure of iron-pnictide superconductors with increasing impurity scattering. By the successive introduction of nonmagnetic point defects into BaFe2_2(As1−x_{1-x}Px_x)2_2 crystals via electron irradiation, we find from the low-temperature penetration depth measurements that the nodal state changes to a nodeless state with fully gapped excitations. Moreover, under further irradiation the gapped state evolves into another gapless state, providing bulk evidence of unconventional sign-changing ss-wave superconductivity. This demonstrates that the topology of the superconducting gap can be controlled by disorder, which is a strikingly unique feature of iron pnictides.Comment: 5 pages, 4 figure

    Columnar defects and vortex fluctuations in layered superconductors

    Full text link
    We investigate fluctuations of Josephson-coupled pancake vortices in layered superconductors in the presence of columnar defects. We study the thermodynamics of a single pancake stack pinned by columnar defects and obtain the temperature dependence of localization length, pinning energy and critical current. We study the creep regime and compute the crossover current between line-like creep and pancake-like creep motion. We find that columnar defects effectively increase interlayer Josephson coupling by suppressing thermal fluctuations of pancakes. This leads to an upward shift in the decoupling line most pronounced around the matching field.Comment: 5 pages, REVTeX, no figure
    • …
    corecore